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Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization
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A diverse range of molecular self-organization processes arises from a competition between directional and
isotropic van der Waals intermolecular interactions. We conduct Monte Carlo simulations of the Stockmayer
fluid (SP with a large dipolar interaction as a minimal self-organization model and focus on basic thermody-
namic properties that are needed to characterize the polymerization transition that occurs in this fluid. In
particular, we determine the polymerization transition lines from the maximum in the specifiCpeand the
inflection point in the extent of polymerizatiod. We also characterize the geometradius of gyratiorR,,
chain lengthL, chain topology of the clusters that form in this associating fluid as a function of temperature,

T, and concentratiory. The pressureR, and the second virial coefficier,, were determined, since these
properties contain essential information about the strength of the isotiwgricder Waalsinteractions. Our
simulations indicate that the locations of the polymerization lines are quantitatively consistent with a model of
equilibrium polymerization with the enthalpy of polymerizati@fsticking energy’ fixed by the minimum in

the intermolecular potential. The polymerization transition in the SF is accompanied by a topological transition
from predominantly linear to ring polymers upon cooling that is driven by the minimization of the dipolar
energy of the clusters. We also find that the basic interaction parameters describing polymerization and phase
separation in the SF can be estimated based on the existing theory of equilibrium polymerization, but the
theory must be refined to account for ring formation in order to accurately describe the configurational
properties of this model self-organizing fluid.
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[. INTRODUCTION and the changing molecular dynamics that accompany these
. . transitions. It is also important to understand how these self-
The increasing demand to manufacture structures at thgrganization transitions couple to phase separation and other
nanoscale has made it necessary to pursue new fabricatigmnsitions (e.g., liquid crystalline orderingto create new
strategies. Many researchers have taken inspiration from bigwhbrid or hierarchical transitiongl1-15. Advances in this
logical systems that exploit supermolecular self-assembly tfield have ramifications for understanding biological pro-
form complex hierarchical structures of specific function andcesses, as well as providing a versatile tool in developing
structure and have developed synthetic molecular systenteew materials, devices, and pharmaceuti¢@ls
exhibiting this kind of self-organizatiohl-5|. Others have Our approach to this fundamental problem is to isolate a
harnessed biological systems such as viruses to perform thiginimal physical model of molecular self-organization and
function[6]. This approach is highly attractive for the fabri- to intensively investigate this model through a combination
cation of large-scale devices from nanoscale or molecula@f Monte Carlo and analytical modelingnolecular dynam-
components, but theontrol of this type of process remains icS simulations are planned for a later stagife selected the
largely a dream. Progress in this area requires an understargl2ssical Stockmayer fluitSP) [16] for this purpose since it
ing of the basic principles that underlie the molecular self-NvVolves a minimal description of the interplay of directional
assembly procesg—10. Precise control of synthesis is re- (dipolan and isotropio(Lennard-Jones van der Waglster-
quired [1-3], along with theoretical principles that can actions that have been suggested to fundamentally underlie

predict what structures form and the conditions under whicﬂpany supermolecular self-organization procesgEs-19.
they are stable. his choice is also motivated by the existenceeréctana-

In our view, a major shortcoming in the control of mo- lytic results f_or the seconfR0] and third viria! coefficier!ts
e e A [20-23 of this model and by extensive previous MC simu-
Ieculqr self—orga_nlzatmn for fabrication is the lack Of. un.der'lations[24,2?ﬂ of the critical propertiescritical temperature,
standing of the interplay between molecular potential inter. iical composition, compressibility factor, etaelating to
actions (which are often highly directional rather than ’ '

X ific” . der Waals i ; d the th phase separation in this model.
Unspeciiic™ as in van der Waals |nteract|<_)rar_1 the ther- The SF model is also known through many studies to
modynamics governing these self-organization transition

S . . . . .

; . “Zexhibit supermolecular organization into dynamic polymer

We a_lsp need to know the d'ff‘?fe”t kmds of thermodynammchains through a head-to-tail alignment of the dipolar fluid
transitions that occufand their associated phase bound

. - . “particles[26,27]. There have been many recent articles at-
arie9, the physical interaction parameters that govern themtempting to understand the coupling between phase separa-
tion and this molecular self-organization procé28-30Q,
but many aspects about this model remain largely unresolved
*Electronic address: kevin.vanworkum@nist.gov because of the general difficulty of performing simulations
"Electronic address: jack.douglas@nist.gov on associating fluids and the corresponding difficulty in theo-
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retically describing these intrinsically heterogeneous fluidsnteractions[45], etc) has come as a consequence of the
[29]. In the end, our choice of the SF as a model of molecutealization that these fluids can exhibit thermodynamic and
lar self-organization was dictated by the limitations of exist-critical properties completely unlike those of “simple” fluids
ing computational resources. Simulation of equilibrium prop-{46,47. A substantial impetus to studying the SF arose in
erties of this type of self-organizing system must include gparticular because of two remarkable recent findirigsthe
minimal description of the essential characteristic of this pro-observation of ferroelectric behavior in simulations of dipole
cess, a competition between directional and isotropic intersoft-sphere fluid in the liquid state in association with chain
actions. formation [42], and (ii) the apparentlisappearanceof the
Although the SF model is rather idealized, it does havecritical point for phase separation when the magnitude of the
some interest as a model of real self-organization processeklpolar interaction became critically large relative to the
of practical interest. It is a reasonable model of the stringlikemagnitude of the van der Waals interaction energy
self-organization of magnetic nanoparticlg$,27 and the [24,25,49. These works have set off an avalanche of activity
self-organization of molecular wirdd8]. These classes of relating to the SF and related dipolar fluid models.
materials have a growing number of technological applica- Since the polymerization of the dipolar particles is clearly
tions[17,18,29. Certain bacteri§31], and presumably other at the origin of many of the peculiar properties of dipolar
biological systems, exploit the self-organization of iron ox-fluids, there have been many recent studies attempting to
ides and iron sulfide particles which they synthesize for di-characterize this transition as a variety of “equilibrium poly-
rectional navigation, and these ferrofluids are quite reasormmerization”[28,30,48,49 Teixeiraet al. [29] give a good
ably described by the SF. Recently, it has been possible treview of the successes and limitations of these efforts. This
synthesize a wide range of magnetic nanoparticle systenmmevious work clearly indicates that associating dipolar fluids
exhibiting chain formatiorj32,33 and directly observe this are very interesting, but computational methods of sufficient
process. power to simulate or to analytically model these fluids do not
The SF also seems to be a promising model for the selfeurrently allow for a resolution of the many outstanding
assembly of synthetic peptides and other biological macroguestions.
molecules into thermally reversible gels comprised of self- The present work is an extension of previous efforts, but
organized fibers of molecular chains of these folded peptidesur work has a different focus. Our first concern is to imple-
[34]. The formation of fiberlike structures also occurs in ment an efficient numerical sampling method for simulating
amyloid proteins found in association with Alzheimer’s dis- the SF at low density and to determine the location of the
ease[34]. Moreover, strong dipolar interactions have beenpolymerization transition line. We determine these transition
indicated to be essential in microtubule self-assei®B), a  lines as an experimentalist would approach the problem and
part of the essential cell machinery for many complex organstrive to avoid any bias regarding the theoretical interpreta-
isms responsible for driving chromosome separation and faion of this transition, since a reliable theory does not clearly
cilitating molecular transport within the cell. As a final point, exist. Recent theoretical computations by Dudowétzal.
we mention that the SF provides a rather idealized model of11,12,3Q and otherd28,48,49 suggest models that might
water, which is characterized by having a rather large dipol@pply, but we do not presume the correctness of these models
moment. Many of the unique properties of water derive frombefore they are validated by reliable simulations.
its associating characteristi€35]. The natural extension of The exact relation between the transition curves govern-
the SF model to include quadrupole interactiph@7] would  ing the chain formation process and the molecular interaction
make the model an even closer mimic of this complex fluid.parameters is a key concern in our investigation. Notably the
There have been numerous previous studies of the SF. Ttpolymerization transition lines have never been determined
early work in the 1940s was concerned with the influence obefore in the SF. We illustrate the utility of the polymeriza-
dipolar interactions on the thermodynamic properties oftion transition determination for the quantification of the
gases[20,20-23,36—3Band the deviation from the corre- properties of the self-organizing fluid by showing that a uni-
sponding states description of the critical properties of dipoversal description of the chain length as a function of tem-
lar fluids [39]. The prevalence of dipolar fluids to cluster at perature and concentration can be obtained by introducing a
equilibrium and the impact of this clustering on the proper-reduced temperature scale based on the concentration-
ties of these fluids were appreciated from the beginning oflependent location of the polymerization transition. Equation
these investigation36,37]. The direct observation of chain of state ideas are evidently a powerful tool describing mo-
formation in ferrofluids of magnetic particles dispersed inlecular self-organization as well as describing the critical
various organic solvents alerted researchers to the extent fwoperties of simple fluids.
which these simple systems can self-organize into complex In the course of our characterization of the density,
structures and the sensitivity of these fluids to external magdependence of the chain length, we found that this prop-
netic fields[40,41]. erty scales in proportion tp rather tharp'?, as in analytic
The difficulties that this clustering created for conven-models suggested to describe this type of polymerization
tional mean-field liquid-state theories were slow to develop[11,12,50. The exponent describing tiedependence df is
but simulation soon pointed to serious failures of models thasimilarly almost doubled from the “expected” value. Unfor-
have proven their value for homogeneous fluj@d]. The tunately, this indicates that all the proposed models of equi-
intense activity in simulating the SF and related idealizedibrium polymerization in the SF are inadequate for a com-
models of dipolar fluid¢soft-sphere-dipole fluidgt2], dipo-  pletely quantitative description of the SF. Further
lar hard-sphere modgk3,44], spherocylinder with dipolar investigation revealed that the SF with a strong dipolar inter-
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action exhibits topological transitions between linear and 0
ring polymers upon cooling. The character of this transition
appeargjualitatively inconsistentith the transition between

linear and branched chains predicted by Tlutsy and Safron =25
[51], however(see Sec. Il .

Ring formation occurs at low temperature simply because g
this minimizes the energy of the dipolar chd®2]. Since
this topological transition between chain and ring polymers
was not initially anticipated and this phenomenom is not 75
incorporated in current models of equilibrium polymeriza-
tion in this fluid, we examined the configurational properties
of the chains in greater detail. We observed a bimodal distri- -100
bution of the radius of gyration of the polymers correspond- s
ing to coexisting linear and ring structures and found that the i@\ 7

-

R, mass scaling exponent was consistent with polymer

chains with excluded volume interactions and some degree

of stiffness arising from the dipolar interactions. We also . .

note that the mass scaling exponent describing the swelling FIG. 1. (Color onling Uy=tmin(6, ¢)/e for the Stockmayer

of the polymer chains is consistent with an equilibrium po-medel withz.==36.

lymerization formulation of theXY model in which directed

polymer loops geometrically form in association with the should be reevaluated for simulations at higher densities than

transition[53-55. reported here. The LJ contribution to the total energy is given
Finally, we examined the pressure and second virial coefby

ficient of the SF since these and related properties provide

essential experimental information regarding the magnitude o= 48[< o->12_( 0-)6] W

of both the van der Waals and the directiofdipolar inter- r

actions driving the molecular self-organization. We were able

to calculate the Boyldor “theta”) point exactly for the SF  wherer;; is the distance between particlesind j, ¢ is the

model for arbitrary dipolar and van der Waals interactionsmagnitude of the potential minimum, awdis the separation

and we validated our simulations against exact analytic calat which the energy vanishes. The simulation boxes contain

culations of the second virial coefficigt6,20 as a function 256 particles and have edges ranging in length from@28#4

of T and the dipolar interaction. These results show that #4.50 so that the density range is 0.003<8/p.;

reliable estimate of the van der Waals interactions can bes0.0637, whergy ;=0.31672 is the critical density of the

extracted from measurements of the presgorecompress- LJ fluid [56]. All densities reported in this paper are normal-

ibility ) at low concentrations, despite the slow variation ofized by p. ; and all temperatures are normalized By,

the pressure at higherarising from the polymerization pro- =1.31e/kg, the LJ critical temperaturgs6]. This normaliza-

cess. tion procedure is used to facilitate comparison with the lat-
In summary, we have simulated the SF model over a widdice models of equilibrium polymerization described later in

range of T and p using an efficient computational method, the text.

and we have determined the essential thermodynamic param- The dipolar contribution to the energy is given by

eters that govern the self-organization of the particles into

chain structures by mapping out the polymerization transi- oy (g ) (g - )

tion line as a function o and p. We show that the van der Udipole = r3 -3 (2 '

Waals interaction parameter governing phase separation can Y U

s_ti[l be det_er_mined in the conventional way from the secondyhere ; is the dipole moment of particleand Fj=r;=fi is

virial coefficient of P. the separation vector between partidlesdj. In the litera-

ture, it is conventional to define a dimensionless dipole mo-

ment, u' =u/\ec®. The total energy is given byi=uj;

+Ugipole FOr all simulations reported here, the magnitude of
We perform canonical ensemble Monte CaiC) simu-  the dipole strength is given by?=36 unless otherwise

lations of the Stockmayer fluid in cubic simulation boxesstated. With this choice of dipole strength, the dipolar con-

with periodic boundary conditions. In the Stockmayer modeltribution to the minimum in the potential is roughly 100

[16], two particles interact via the Lennard-Joried) poten-  times that of the LJ contribution.

tial with an additional point dipole at each particle center. The anisotropy in the potential is illustrated in Fig. 1,

The interactions between particle pairs are truncated at halfhich shows the minimum of the Stockmayer potential as a

the box length. Using this boundary condition, our evalua-function of fixed relative orientations of the two particles for

tions of the second virial coefficieFig. 15 agree with the u'=6. The deep minimum corresponds to a head-to-tail

exact analytical solution and with sample runs using the fullalignment of the dipoles and a particle separation

Ewald summation method. The use of this cutoff procedure=0.829%. The potential at this minimum ig,,;,=-100.%

Fij i

(2)

Il. SIMULATIONS
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for this choice ofu”". More generally, the magnitude of this
potential minimumeg,+, can be described exactly by 10-
*2 3 6 12 L
8,,:48[“—<i> +<L> _<1> } @ Ki
2 \Tmin I'min I'min ﬁ:} r
= 8r
) 1/3g\ 11/3
M:{%<22/3)\_4+2 8)} | @
o 3u A 7
_ " 2 [mi57 0 A _ 14113 N R
N =270 + 3023270 - 32 - 16]'7, (5) % 5000 10000 15000 20000

: : . . " MC S
wheree is the magnitude of the potential minimum far P

=0 (the LJ minimum. It can be shown that,- has a nonana- FIG. 2. Temperature versus MC step for a representative replica.
lytic dependence op. and has the limiting asymptotic be- The T,, and T, (discussed latgrare shown as dotted lines for
havior reference.

lim e,/e ~ 3u"®3/4. (6)

o long compared to typical molecular-dynamics simulation

. L . . times. There are MC algorithms that can overcome these
We can obtain a good approximationdg by simply adding difficulties. however

an additional nonanalytic term and a constant and fixing their In this work, we use the aggregate bias Monte Carlo al-

values by demanding that the exact value pfbe recovered gorithm [60] to improve the sampling of relevant regions of

for p'=2 (e, =8e) andu =0 (e,+ =), configuration space and enhance the formation of clusters.
e, /e ~1+0.888 0% + 3874, (7)  This method allows for the simulation of chain, ring, and
branched forming molecules. At the heart of this algorithm is
This expression agrees with the exact result from@gto  an intrabox swap move that is targeted at sampling the for-
within an accuracy of 2% for arbitrary positive , apart mation or destruction of clusters. We also implement the
from the range(0.08,1.4 over which a crossover from LJ simple translational and rotational moves to explore nearby
dominated to dipole-dominated potential behavior occurgegions of phase space.
[25]. Equation(7) provides a general estimate of the “stick-  \when implementing the simulation of strongly associat-
ing energy” in our comparisons with the equilibrium poly- ing systems, proper statistical sampling can be difficult at
merization model below and is a basic input into this type ofiow temperatures where configurations may become trapped
analytic model. The nonanalytic dependencespf derives  in |ocal energy minima. Traditional MC algorithms may not
from the soft nature of the potential core interaction in the Lipe capable of sampling the relevant regions of phase space
fluid, and we contrast Eq(7) with the corresponding result ithin a reasonable amount of time. Parallel-tempering
for hard spheres with a point dipolar interaction where[61,62 is a useful technique that has been used in the study
e ns/&=2u%. The hard-sphere expression fef ysis @ of thermodynamic transitions and can be efficiently applied
reasonable approximation for the SF provided thats not  to the simulation of associating fluids.
too large or too smalli.e., to within 2% for 1.6k u In this study, each simulation is performed within the
<2.52 and is exact fop =2. parallel-tempering framework. This method employs a set of
The minimum energy configuration of a finite, un- canonical ensemble simulation boxes running in parallel at
branched polymer is a ring, but entropy effects favor opertifferent temperatures, but with the same number of mol-
chain configurations at high temperatuf8g]. The stiffness  ecules and the same density. Boxes are arranged in order of
of the chain is related to the shape of the energy basin in Figncreasing temperature, and periodically, random adjacent
1. At intermediateT, there is a coexistence of rings and pairs of boxes are chosen and a swap move is attempted. In
chains. Because branching “Y-like” junctions have a lowerthe present study, 18 boxes were used at each density and
energy than free ends, connected networks are likely to alsgdjacent boxes differed in temperature &¥/ T, ;=0.229.
form at lower temperatures as transient structfss57.  This allows adequate swapping while still maintaining a rel-
Thus, the particles associate to form linear chains, rings, angvant T range within the constraint of available computa-
hybrid branched structurgéclusters’) in dynamic equilib-  tional resources. In a successful swap move, the atoms in one
rium [27,51,57. Ring-chain equilibrium has also been ob- hox are exchanged with those in the other box. Effectively,
served in models of reversibly associating polymer solutiongonfigurations take a one-dimensional random walkTin

[58]. space. Swap moves are accepted with a probability given by
At gas phase densities, the simulation of strongly associ-

ating systems can present challenges for traditional simula-
tion techniques. The strong binding energies between associ-
ated particles and large distances between nonassociated
particles can make sampling of important regions of configuwhere AU=U,-U, is the potential energy difference of the
ration space difficulf59]. The time required for particles to systems, andB=1/(kgTp)—1/(kgT,).

undergo an association-disassociation transition can be very Figure 2 shows the temperature of an example configura-

Pacp=Min[1,exdAUASB}, (8)
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0.15 . ‘ . ; . - the critical behavior of the SF should also be revisited with
I T the computational methods described in the present paper, or
0.12- 7 by alternative method&.g., density of stat§$3]) that have
I 1 recently proved their value in simulating supercooled liquids
@0.09- 7 and other kinetically sluggish thermodynamic systé6#.
5 ]
& 0.06f . o o
| A. Polymerization transition lines
0.03- 7 The polymerization transition line is basic to understand-
, ; 7 ing the thermodynamic properties of the type of particle self-
0% T R T E— 0 organization observed in the SF. This type of transition line

Ule is comparable in importance to phase boundaries in ordinary
phase separation because they contain basic information
about thermodynamic interactions responsible for the transi-
tion. Such transition lines are well known in micelle forming
liquids [65—-67), but also occur much more broadly in sys-
] ] ] ) ) tems undergoing living polymerizatidre.g., polya-methyl
tion versus MC step during a simulation run as it steps fromstyreng in solution in the presence of a chemical initiator
box to box. It is evident that configurations are sampling thqeg]], thermally activated polymerizationactin, sulfup
full temperature range within the parallel-tempering algo—[69,7q, clustering in polymer nanocomposit¢g1], and
rithm. This allows lowerT simulations to benefit from the hermal reversible gelation of polymefg2-77, colloids
faster motions available at high€y thereby leading to faster [78-80, and low molecular mass organogéls—19. The
equilibration. In addition, the swapping of configurations re-|gcation of the polymerization transition temperature as a
duces the time spent in local minima and allows the systenynction of concentratior“polymerization line’) has never
to explore phase space more effectively. before been determined in the SF and we first focus on this
To ensure that configuration swapping moves are accept‘%ﬁhantity.
at an efficient rate, adjacent boxes must be close enough The most common way to define the polymerization tran-
together inT space to allow their energy histograms to suf-sition |ine is through the constant volume heat capa€iy,
ficiently overlap. Figure 3 shows the adequate overlap of theg1_g3. Normally, the transition between a nparticle-
energy histograms of the lowest density box at a temperaturgispersed state and a state in which the particles are orga-
(T/T1,=6.87 near its polymerization —temperature nized into specific structures is accompanied by a maximum
(Tp/Tc13=6.72 and that of two adjacent boxe§/T; ;  in the heat capacity. Th& where this maximum occurs is
=6.64 and 7.1p At this density, the energy histograms are attaken as the “polymerization” or “clustering” transition tem-

their sharpest and at all other densities the overlap of adjaperature,'l'p. We thus conside€, for the SF as a function of
cent energy histograms increases at the polymerization trarr and p.

sition. Figure 3 thus shows a worst case scenario for simu- Before calculatingT, as a function ofp, we note that
lations in this study. Each system was equilibrated for ahere is another conventional criterion determining the poly-
minimum of 10° MC steps and thermodynamic averagesmerization transition line that is utilized by experimentalists
were computed using a minimum of IBIC steps, where an pecause of the difficulty in measuring, [69,81,83. The

MC step consists of an attempt to translate and rotate evefyolymerization transition line is also defined through the ex-
particle in the box. Parallel-tempering swaps were attemptegent of polymerizationd,

every 25 MC steps.

FIG. 3. Energy probability distribution functions foF/T;;
=6.64,6.87,7.10 atp/pc) ;=0.00318. At this density,Ty/T¢,
=6.72 anqu)/TC’LJ:6.87.

® =Ny/N, (9
Il RESULTS whereN, is the number of associated particles ands the
The present paper specifically avoids an investigation ofotal number of particles. Two particles are considered to be
the critical properties and analytic modeling of the impact ofin a cluster if the separation distance is less thanl.5c,
the polymerization process on the critical properties of thd.e., approximately where the interaction energy is at least
SF since these properties have been a topic of intensive stu@p% of the potential minimum. The location of the transition
in previous work 24,25,28-30 We have chosep” to equal  lines is expected to be insensitive to small changes in the
a value larger than the critical valy€é =5 for which phase definition ofr,. The transitionT is defined as the inflection
separation has been claimed not to exist in the[ 3525 point in ® as a function ofT, and we denote this quantity in
We saw no evidence for conventional phase separation in ouhe present paper a%. The propertyd is an “order param-
computations in the parameter regime we investigated, seter” for the polymerization model describing the extent to
that we feel we have successfully avoided questions relating/hich the polymerization transition has gone to completion
to the phase separation of the SF. We note, however, that th&3,81-83.
former MC simulations of the SF were based only on simple The constant volume heat capaci®y, is calculated from
Gibbs MC sampling methods, and the equilibration timesthe fluctuations of the potential energy at each temperature
were short by current standards. Thus, the characterization aihd density. The heat capacity is given by
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FIG. 4. Constant volume heat capaci®y, versusT. Filled sym-
bols are from derivatives of the potential energy and open symbols

are from fluctuations of the potential energy. Inset shows peak val- 081
ues ofC, versusp. Estimated uncertainties according to the method I
of Ref.[84] are on the order of the size of the symbols. 0.6
G
1 04
C,= [(U%) - (U)?]. (10 i
" NkgT? 02t
The constant volume heat capacity can also be calculated by | . .
directly differentiating the potential energy with respectto % 002 / 004 006
p/p
_14Y a1 .
" NIT FIG. 5. Extent of polymerization versus temperat(ae and

. . ) versus densityb). Arrows denote increasing and T, respectively.
Figure 4 shows the heat capacity as a function of temperaturghe estimated uncertainti¢g4] for ® are less than 1%.

for three densities calculated using E¢E0) and (11). The
quantitative agreement between the two methods of comput-
ing C, is encouraging. We observe that the peak in the hedion transition temperature determined from the inflection
capacity occurs at loweF for lower densities, as predicted point of ® [81,82. This expectation is apparently based on
by the theory of equilibrium polymerizatiof83]. A similar ~ the exact coincidence of these transition points in the suc-
pattern of behavior was observed recently for model nanocessful mean-field theory of living polymerization; this rela-
particles clustering in a polymer melt by molecular dynamicstion holds regardless of the initiator concentrat{d,83.
simulations[71]. As discussed by Staat al.[71], this trend  Recent work of Dudowicet al.[30] has indicated that these
is quite distinct from what we would expect if the “cluster- transition temperatures amgot the same in more general
ing” were due to phase separation. At higher densities, th&odels of equilibrium polymerization, however. In particu-
peak becomes broader. The inset of Fig. 4 indicates that thiar, the analytic theory of equilibrium polymerization without
magnitude ofC, is increasing with decreasing This is an  the constraint of an initiatoitermed the freely associating or
indication that a vapor to liquid phase transition is not occur-FA model[30]) [50] has been suggested to describe the equi-
ring. The T at which the peak occurs at each density islibrium polymerization in the SH28,30,48,49 In this
termed thepolymerization temperaturend is denoted by,. ~ model, every particle can freely associate with any other par-

Figure 3a) plots the extent of polymerizatio®, versus ticle without restriction, andy is found to occur substan-
temperature for a number of densities. The transition temtially aboveT, [83].
peratureTy, is defined as the inflection poirk in the ® In Fig. 6, we show the values @f, and T, that we deter-
versusT curve. At low temperatures, nearly all the particlesmined from our simulationgésee Figs. 4 and)5We see that
can be incorporated into individual clusters, while at highTe is indeed larger thafT, over the density range investi-
temperatures most particles exist as free monomers. It igated and that these curves tend to come together at low
stressed that the monomer units arghiarmodynamic equi- density. Comparison to Fig. 4b of Ref83] demonstrates
librium with the clusters. The clusters grow or diminish in good qualitative agreement between the shapes of the transi-
size as particlegor other clustersjoin or leave the clusters. tion lines predicted by the FA model and the SF.
Similarly to C,, the transition becomes sharper and grows at Unfortunately, there is no closed exact analytic formula
lower densities. Figure(B) shows® as a function ofp at  describing the polymerization transition line in the FA model
constanfT. The polymerization transition can proceed at con-[83], but there is a simple estimate of the polymerization
stantT by increasing the density. From Fig(th we see that transition line in the related model of “living polymeriza-
the transition is sharper at low@&t tion” in the limit of vanishing initiato] 13,83. In this model,

It has often been assumed that the polymerization transthe polymerization transition lin€T,) is described by the
tion, as defined throug@,, is equivalent to the polymeriza- so-called Dainton-lvin equatiof85],
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10 : . - T : . estimates ofAs, were noted years ago by Rowlinson for real
dipolar gase$20]. The dashed line in Fig. 6 shows the DI
equation withAh;, fixedby the contact energy of the molecu-
lar potential andAs,/kg fitted to the value —4.5. A better fit
1 (solid line) of the DI equation to thf 4, data is obtained by
i letting both Ah, and As, vary. This procedure yieldah,
=-108& andAs,/kg=-5.17. The agreement with the expec-
tations of the equilibrium polymerization model is highly
. encouraging. The former best estimateAsf,/kg for the SF,
based on a study of phase separation in this model for lower
. . ‘ . . . " and an assumption that the chains were éfiéxible), is
% 0.02 0.04 0.06 As,/kg=-5.9-8.5).

PIPeLs The renormalization of the energetic parameters govern-

ing the T, transition line is predicted to be more appreciable

FIG. 6. Transition temperatures versus density. Lines are fits tghan for theT,, transition line[13]. A fitting of the DI equa-

the DI equation. tion to the FA-model prediction of , [13,86 indicates that
the apparent value ath, obtained from this fit is related to
Ah the true value ofAh, by the approximatiortassumption of

Tp(Dl) = ——F— (120 flexible chaing

As,+kglnp’

AhSPHAhT=1.014 + 1.602 exi.327As k), (14)
whereAh, and As, are the changes in the enthalpy and en+,here the maximum deviation in the approximation is less

tropy for the polymerization associatigreaction at a given  han 1.4 9% for —28.7% As,/kg<—4.6. ForAs,/kg=—4.5 and
concentration. Equivalently, E€L2) defines a “critical poly- AhY=-100.%, this relation predicts thalhg%obtained from

merization concentration . having an Arrhenius form, a fit to T, should equal —~132 [Notably, this effective value
of Ah, is not a correct estimate of the enthalpy of associa-
pc=Aexp(Ahy/kgT), (13 tion, but rather an apparent value obtained by fitflijglata

to Eq.(12).] Afit of the DI equation to theT, data in Fig. 6
where A=exp(-As,/kg). Equation(12) indicates a mono- (solid line) yields Ah}’)pz‘.ﬂ%, which is in reasonable
tonic increase i, with p and is widely used to describe 2greement with Eq(14). This finding provides us with fur-
clustering transitions in equilibrium polymerizatigtiving ~ theér encouragement that an equilibrium polymerization
polymerization[81,87 and thermally activated polymeriza- Model can provide a quantitative description of the polymer-
tion [17-19,74), as well as gelation, micellatidi65,66, and ~ Zation process in a molecular fluid. -
other varieties of molecular self-organization at equilibrium. One of the shortcomings of our current description of

This Arrhenius form is often found to fit clustering transition SE1-0rganization in the SF is the uncertainty in the estima-
tion of As,,. This is a basic problem in describing equilibrium

data very well as a matter of phenomenology. The generallt)éelf-organization processes that has received rather little se-

of Eq_s. (1.2) and (13) in describing a wide range Qf self_ rious attention. Economou and DonoH&¥] have provided
organization processes other than the polymerization of lin; : . : .

. . . I the basis for attacking this problem by showing the formal
ear chains supports the contention of universality in the ther-

modvnamics of associating fluids suagested by Dudowtcz equivalence between chemical association theory and the
al [lyl 12,83 9 99 y classic liquid state theory of associating fluids developed by

Dudowicz et al. [13] find that Eqs.(12) and (13 also Wertheim[88]. This correspondence provides a direct formal

describe thel, and T, transition curves of the FA model of rpute to calculatingks, through liquid state correlatlon func-
o P b . . tions, although the approach has not yet been implemented.
equilibrium polymerization, but the interpretation of the

model energetic parametetah;, As, are not exacty the o ¥ PIEEERE e B P UEE POVRRIEl
same as in the Dainton and lvin mod86]. The problem is pic p P q

that the values oAh, andAs; can be “renormalized” in the putation ofAs, by such a method.

fit to the DI equation from their exact values in the FA B. Average degree of polymerization

model. The next most basic property of a fluid undergoing equi-

The af_“?"y“c theory of DUdOW'QEt al. [13] predicts _that librium polymerization is the average degree of chain poly-
the transition temperaturg; remains close to the Dainton- merization,L. This quantity is defined bj13,83
Ivin transition curve and comparison of the simulation data " '

to the DI curve should yield the most reasonable energetic N )
parameters for the SF fluid. In Fig. 6, the “sticking” energy, 2 IN;
Ah,, is fixed in this expression to equal the potential energy L= ':Nl , (15)
minimum (contact energyfor SF particles in a head-to-tall
arrangement, i.eAh,=-100.%. A previous paper compar- 21 Ni
1=

ing the phase behavior of the SF to the FA model estimated
As,/kg to be roughly in the range -5 to —-10, depending onwherei is the number of particles in a given chain axgis
the extent of chain stiffness, and similar order-of-magnitudehe number of chains of lengih In Fig. 7, we showL as a
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|+ r .o arrow indicates the direction of increasing temperature. The esti-
20l ool P N mated uncertaintieg84] in L are less than 0.5% and are not in-
I *‘; = e ] cluded for clarity.
=15 % -

I *% ] higher densities. The linear regions generally coincide with
10»— % o 0.2 p/8'04 e 7 the relatively flat regions in the pressure versus density
sk ‘\N ot i curves(see Sec. Il D. The concentration dependencelof

I " reflects thep dependenge ob shown in Fig. 5. In the I.imit
0 0'8 . 1'0 s "l"f"mz it 01.4 of vanishing concentration, we must hake1, butL lin-

T/T early increases beyond sorfiedependent concentratiop,
(] . h e e
where polymerization initiates. Thus, we descrilip) by

FIG. 7. Chain length of polymer. Average chain length versus

temperaturg@). Average chain length versus temperature normal- L=1+a(T)(p-pJp> pe. (16)
ized by T4 (b). The inset of(b) shows the average chain length at
T=To. We note that more accurate determinations of the “critical

function of T for a range off, and we find a family of curves POlymerization concentrationg, can be obtained from Eq.
describing the general increaselofipon cooling. At higher ~ (13) rather than Eq(16) due to the uncertainty involved in
densities, the increase I(T) occurs faster a3 is lowered, —determining the intercepts in Fig. 8.
reflecting thep dependence of the polymerization transition. ~ Our examination of. as a function op gives us our first
The curves in Fig. 7 notably have a similar shape, and it idint that the simple FA model of equilibrium polymerization
natural to seek a reduced variable description. provides an overly simplified quantitative description of
Our discussion above indicates that, contrary to the opinequilibrium polymerization in the SF. The data in Fig. 8 in-
ions expressed in former work, the transition temperafiye dicate thal at a fixedT has a nearljinear dependence op
has a more fundamental significance as a definition of theather than the well-known nonanalytical scaling, i.k.,
transition point than the transition curve defined thro@h  ~e*"w?e™pl2 predicted by the FA mode]13,50,89,90
regardless of the detailed nature of the association procesghis is of physical importance because a near-linear depen-
We thus define a reduced temperatlifd@,, and examine the dence ofL on concentrationp, has often been report¢@1i]
extent to which the transition curves shown in Fig. 7 reducdn wormlike micelles which have also been modeled by the
to a single master curve. The result of this data reduction i§A equilibrium polymerization modé¢b0]. Clearly, the dipo-
shown in Fig. Tb). This definition of reduced temperature lar interactions are leading to important qualitative effects
collapses the. data to a nearly universal function. An im- that are not included in highly simplified models of equilib-
portant characteristic of equilibrium polymerization is the rium polymerization such as the FA model.
near constancy13] of L at the transition temperatury; The T dependence of also deviates substantially from
Ly=L(Ty)=2+0.5 and estimates df; are shown in the the predictions of the FA model. In Fig. 9, we show the slope
inset to Fig. Tb). Note thatL, is relatively small because of «(T) describing the increase ib with p. The FA model
the large weight given to monomers in the determination oforedicts thatL should increase in the classical fashion
this average. The chains are actually highly polydisperse and.3,50, L(FA) ~ e*w2sT at a fixedp, but the data in Fig. 9
this aspect of the SF has been investigated in previous woriadicate that the exponent is neatlyice as large as the FA
[28,48,49. The near constancy dfs can be understood prediction, as in the case of the concentration scaling expo-
from the FA equilibrium polymerization model where also nent. Specifically, the solid line corresponds to the scaling
Ly=~1.5 andL(T=T,) ~3, independent op [86]. relation a~exp(E/kgT), whereE=-91.% and the dashed
The dependence of tHeon thep is shown in Fig. 8. At line indicates the result of fixing by the SF intermolecular
the lowestT, the degree of polymerization is nearly linear potential minimum valueE=Ah,=-100.%. How can this
with respect tgp. However, at higheT the linearity begins at  exponent doubling be understood?
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Dudowiczet al.[13,83 have noted that a near linear de- o ) _
pendence o occurs in equilibrium polymerization models ~ FIG. 10. 2D projection of 3D system configurations for
in which the polymerization process occurs subjectéa-  P/PcLi=0.00637.(8) T/Tc1,=7.56, (b) T/T¢,=7.10,(0) T/Tey,
straints(e.g., chemical initiation and thermal activatighat =41 (@ T/T¢,=5.95. At this density, Te/T,,=7.25 and
create a bottleneck in the polymerization kinetics. CunouslyT ITe19=7.02.
such kinetic constraints actually lead to a msttarperpo-
lymerization transition than in equilibrium polymerization in
the absence of these constraiff8 mode). This comparison
is made for a typical experimental value of the initFi)ator con-@ndRy=1.55 (linear chain for N=7, whereR;=Ry/ 0. For
centration, which is quite small so the transition is sharpsiMPI€ random walks of rings and linear chains, the ratio of
(nearly a second-order phase transitidrater work showed theseRg is simply equal to 1{2=0.71 while this ratio for
this same behavior in equilibrium polymerization with a low SF _Particles in their idealring and linear chainminimum
extent of thermal activation, see Fig. 1b [df3]. Because energy configuration is 0.54. The observed ratio of 0.63 lies

some unknown “constraintgbranching effects, etcmay be in the middle of these two extremes. We thus infer that the
acting in the SF, we examine the configurational propertie€nains and rings can be roughly described as random walks,
of the polymer chains. ut with perhaps some swelling due to excluded volume in-

teractions or chain stiffness induced by the deep minimum of
the dipolar interactioi27].

C. Radius of gyration as a function of chain mass We next examine the configurational characteristics of the
SF more directly in Fig. 12, where we shd% versus the
polymer massN. This figure showsRg for a range ofN
values at a fixed density/ p. ;=0.0102, as open circles and
data for all the other den5|t|étead|ng to better averaging for
long chain lengthsas the small dots. A convincing power-
law scaling seems to establish itself fde=15 and a fit of

and rings coexist. Figure 11 indicates that this distribution
function is bimodal with peak position neR@ 0.97 (rings)

Chain branching is an obvious potential source of devia-
tion from the linear chain model in the SF description if this
phenomenon becomes prevalent. We thus examine system
configurations in the SF at lower to determine if these
structures are apparent. Such structyregys and “clusters’
were anticipated in the original work of De Gennes and Pin-
cus[27], and there have been recent experimef@al33, 6
simulation[13], and theoretical workgb1,57] addressing the
nature of this branching process. At present, there are few
well-equilibrated data inl=3 for which this question can be
considered, however.

Figure 10 shows configuration snapshots g@fp,, ;
=0.006 37 for four different temperatured /T, ;=7.56,
7.10,6.41,5.9p These snapshots are 2D projections of the
3D configurations. A transition from predominately linear
chains(T>T,) to predominately ring polymerd <T,) evi-
dently occurs upon cooling. This topological transition is a
consequence of the system evolving to a state with the low- 0% 10 12 12 16 13
est energy(rings) [52,92. R /o

Quantitative evidence for this topological transition shows
up in the distribution function for the chain radius of gyra-  FIG. 11. Radius of gyration probability density fd¢=7 at
tion, Ry, for the polymers in the transition regidi/T..;  T/T..;,=6.87 andp/p. ;=0.0102. Representative configurations
=6.87, p/p.3=0.0102 where a large number of polymers for a ring and a linear chain are shown.

~
T

Probability Density
[\)
T
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FIG. 12. Radius of gyration versus molecular weight on a10g- g1 13, Number fraction of chains, rings, and other branched
log plot atT/T, ;=6.85. The open circles are f@ pe;=0.0102 = g ,cqres as a function of temperaturg g, ;=0.0191. The inset
and the closed symbols are an average across all densities. Thfqys four examples of the commonly observed mutant structures.

slope of the linear fitsolid line) to largeN is 0.68. The estimated 1156 structures represent the chain topologies from actual polymer
uncertaintie§84] for Ry are less than 1%. clusters

theR; data to a power lawR;~ N”) yields an apparent mass
scaling exponent=0.68+0.04. The uncertainty is estimated specific realizations of the fluid asis lowered(Fig. 10. A
by considering a range, ¥0N< 70, from whichv can be fit. ~ feature that is not so clear from the molecular “snapshots” is
Our estimate of uncertainty is the rangewofound over this  that there are quite a few clusters that cannot neatly be clas-
interval. It is notable that this apparent exponent is insensisified as either rings or chains. De Gennes and Pincus briefly
tive to T andp and that its value is substantially larger thanrefer to such “cluster” structurdd 3,27, but we prefer to
a self-avoiding walk valueysay=0.59[93]. call these “mutants.” Some representative topological repre-
It is likely that the apparent exponentis relatively large  sentations in two-dimensional projection are shown in the
in comparison to the self-avoiding walk exponent because oiinset of Fig. 13. The number density of these objects actually
semiflexibility effects imparted by the dipolar interaction asexceeds those of the rings at higlfem Fig. 13, but at low
mentioned above. This would lead to a slow crossover to théeemperatures below the polymerization transiti@i,/ T; | ;
SAW scaling in the long chain asymptotic limil—«~, as  =8.02 the number density of the rings exceeds that of the
seen for uncharged polymers with “bulky beadi82,95. mutants. We note that the concentration of “defect” struc-
There is another possible interpretation of the expoment tures in the model of Tlutsy and Safrgf1,57 decreases
however. The polymerization transition of rings with direc- with decreasingr, rather than increasing upon cooling as in
tional interactions(consistent with head-to-tail chaining in Fig. 13, so that this model is apparently inadequate to de-
the SH is exactly described by th¥Y model[54,96,97 for  scribe the topological transition in the SF. The traditional
which the correlation length critical exponemt,, is calcu-  view of ring formation based on the driving force of mini-
lated by RG theory and series analysis to eqy@-0.67 in  mizing the chain energy through the formation of the flux-
three dimension$98]. Recent computations have indicated closure rings[92] apparently provides the correct leading-
that theRy exponentr for the polymers that form in conjunc- order description of the origin of the topological transition.
tion with the XY model phase transition equals the correla-
tion length exponent of this mod€99,100, so our finding

N ; . X . D.P d the theta point
v=0.68 is highly suggestive. Further simulations with a ressiire and the fheta poin

larger box size and a larger range@and T are needed to ~ Much of the geometrical complexity of self-organizing
confirm this interesting possible interpretation of fRgex-  Systems derives from an interplay between directional inter-
ponent. actions and isotropi¢van der Waalsinteractions. The dis-

The self-organized structures can be divided into thre€ussion in previous sections emphasizes the impact of the
topological categories: chains, rings, and branched struglirectional(dipolan interactions in the SF by taking the ratio
tures. A chain is characterized by a cluster which has exactlgf the dipolar to the van der Waals interactions strengtls
two particles with one nearest neighbor each and all othefo be large(.?=36), which makes the polymerization tran-
particles having exactly two nearest neighbors. A ring issition T higher than theT for phase separatiof80]. This
characterized by a cluster in which every particle has exactlghoice allowed us to study the polymerization transition in
two nearest neighbors. A branched structure is neither igsolation from phase separation. In many systems, these tran-
chain nor a ring. Two particles are considered neighbors igitionscoupleto create a rich phase separation phenomenol-
their separation distance is less thigr 1.50. In Fig. 13, we  0gy that is quite unlike simple “unassociated” fluifk3].
observe that the number fraction of chain structures drop3his situation requires that we determine the isotrapen
precipitously through the polymerization transition, while theder Waal$ interactions governing phase separation in addi-
number fraction of rings sharply increases upon polymerization to the interactions characterizing the directional interac-
tion. (This effect has been seen experimentally in magneti¢ions (Ah,,Asy). In principle, the determination of the inter-
nanoparticle fluidgd33]. This trend is visually apparent in action parameters governing phase separation should follow
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FIG. 14. Dimensionless pressure versus dengyzPod/e.
The arrow indicates the direction of increasing temperature.

the same procedure as unassociated liquids, but some special
problems arise in the associated fluids that require discussioif

if this task is to be effectively accomplished.

A near constancy of the osmotic pressure as a function
p in the absence of phase separation is a commonly observédP

characteristic of associating fluids generdllyp1-103, and

this phenomenon is naturally expected in the SF. Figure 1
shows the progressive changeRrfrom a linear dependence

on p for smallp (ideal gas lawto near independence @ras

PHYSICAL REVIEW E 71, 031502(2005

FIG. 16. Exact analytic calculation dff4—T, 3)/T, 5 versus
w2, Filled symbols indicate theta point determinations from Fig.
15.

paration. The SF is a particularly favorable case for this
type of comparison since the second and third virial coeffi-

Jfients[16,20,2Q have been determined analytically for this

del so that comparison between the exact analytic theory
and simulation is possible.

L Fig. 15, we show the exact analytic results for the
dimensionless second virial coefficieBﬁE 3B,/ (27Nd®) of
Stockmayer[16] and Rowlinson[20] versus our current

T is lowered from highT throughT,,. This property of the SF simulation (open symbols Simulation results were calcu-

has been noted befof29]. Evidently, the determination of a

reliable estimate of the second virial coeffici@3t our basic

lated by fittingP versusp data to the virial equation in the
range 0.000 63% p/p., ;=0.0637. This comparison shows

measure of the strength of the isotopic van der Waals interthat it is still possible to determine reliable estimateBgfat

action, could become problemati@6] from a practical
standpoint inT ranges in which the pressuke exhibits es-
sentially no dependence gn Note thatP>0 so that the
system is still in the homogeneo(sne-phasgregion from
the standpoint of phase separation.

It is apparent thaP does depend op at very low con-

centrations and we may inquire if these data provide reliabl

information for the second virial coefficienB,. The deter-

low concentrations, despite the complications caused by
clustering at higher concentrations.

The exact analytic treatment 8, allows us to make fur-
ther statements about other characteristic temperatures of the
SF model that are germane to understanding the critical be-
havior of this model, e.g., th€ at whichB,=0 (“theta tem-

perature,”Ty, in the polymer literaturg93] or the “Boyle

temperature” in gas theof23]). The exact analytic expres-

mination of virial information of this kind is important be- Sion for B, is given in the Appendix in the notation of the

cause we also seek to quantify information regarding thérésent paper, and we numerically determifigds a func-
strength of van der Waals interactions responsible for phasdn Of # © to high accuracy based on this expression. The

0.0
20
-
-4.0fF
-6.0F
8.0 R B S Y B R
10 T/T 10 107

AR}

results of this exercise are shown in Fig. 16. The theta point
of the LJ fluid is obtained as the intercept in this figure,
T, ;=3.417 928 03)e/kg. The variation ofT, is roughly lin-

ear in " in the case of the critical temperature for phase
separation in the SF modg?5,30, but this variation is more
accurately described by a power law for larg&(10< u"?
<50),

Tﬁ - TH,LJ —

TH,LJ

*

Ap 17

whereA=0.113 andx=2.56 for which the maximum devia-
tion is 2.5% over the specified” interval. The exponen
apparently has the same limiting value8t—« as in Eq.

FIG. 15. Second virial coefficienB)=B,/by, versus tempera- (6) for £,+/, i.e.,a=3. This scaling relation is natural since
ture.by=27Na3/3. Lines are from the analytical solution and open T4 iS normally proportional to the strength of the intermo-

symbols are from simulations; squares are 00 and circles are

for u"=4. The arrow indicates the direction of increasing,0
§/J,*$6.

lecular interaction. The dipolar interaction clearly renormal-
izes the magnitude of the effective van der Waals interaction
so thatT,~ ¢, for the SH30]. The dependence af, on w"
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is nearly quadratic for small values @f . For smallx™? (0 simulations and as a point of reference in future calculations
<u'2<0.1), we have the simple approximation of the critical properties of the SF.

Future work on the SF should investigate the influence of
strong interchain interactions that occur at higher concentra-
tions of SF particles. The simulations of Wei and Pdi43)]
for essentially the equivalent of the SF flli2b] indicate the
whereB=0.024 38 for which the maximum deviation from formation of a nematic phase and an associated ferroelectric
the true curve is 0.3% and this variation is shown in the insetransition. This ferroelectric transition has been argued to
to Fig. 16. persist even in the liquid state from the presence of long

Importantly, the magnitude af,(x") in the SF is required polymers[106]. These simulations seem to imply that the
in the calculation of the phase boundaries of the SF based @irong interchain interactions at highinhibit the chain-ring
a lattice model of equilibrium polymerizatidi30]. This in-  transition, leading to the formation of structurg¢kbng
formation is crucial in the analytic modeling because achaing having large dipole moments. Consistent with this
change in effective value of the van der Waals interactioypothesis, Chen and Dormidontova show that for a donor/
clearly influences the critical temperature and this renormal@cceptor associating system, there is a crossover concentra-
ization of the van der Waals interaction must be incorporatedion below which ring formation is favorefb8]. It would
in any successful theory of the critical behavior of the SF.evidently be interesting to investigate further how the chain-
Previous calculations in Ref30] had to rely on much less N9 topological transition becomes modified at higpein
precise results so that Eq47) and(18) should enable more the SF and how these changes reflect themsleves in the di-

refined calculations of phase boundaries in the SF. electric properties of the fluid since this property should be
sensitive to the topological form of the clusters.

Real molecules are often characterized by multipolar in-
IV. CONCLUSION 'teracti.ons in addition to dipolar interactipns, 'and we plan to
investigate how these multipolar interactions influence super-
The current interest in the self-organization of particlesmolecular self-organization. Dijkstrat al. [103] have al-
into polymer chains through weak, but directional, interac-ready provided some interesting insights into the structures
tions provides an interesting twist in the development ofthat form when linear quadrupolar interactions are large, as
polymer science. Historically, there was a tremendous residn the case of exfoliated clay dispersions. They find that
tance to the concept that long chain molecules of chemicallyyranchedequilibrium polymers form for large quadrupolar
bound molecular units could exist, and polymers were geninteractions rather than the linear chains found for dipolar
erally thought of as associating particle systems as we find ifiuids. Water is characterized by relatively large dipolar and
the SF[104]. Even until recently, it was normal practice in quadrupolar interactions, and the branched transient network
polymer physics to do everything possible to suppress dystructures are known to be responsible for many of the
namical clustering processes that could perturb the measuranique properties of this complex flujd07]. By varying the
ments of the properties of individual chains of invariantrelative magnitudes of the dipolar and quadrupolar interac-
chemical structurg105]. The maturation of experimental tions, it should be possible to make a transition between
measurement methods in classical polymer science, and thiaear and branched equilibrium polymers. The self-
oretical polymer science generally, provides the necessaryrganization of sheetlike structures is also a possibility. Apart
tools to make progress in characterizing these hybrid mofrom these qualitative changes in topological structure, we
lecular systems involving a combination of chemical and aswill concern ourselves with how these additional interactions
sociative polymerization. The exploration of this field is still alter the polymerization transition line position, the geo-
in its infancy, but promises to be fruitful. metrical characteristics of the polymers that form, and the
Our simulations indicate that the thermodynamic clusternature (e.g., sharpness of transitionf the polymerization
ing transition occurring in the SF corresponds to an equilibtransitions that occur in these fluids.
rium polymerization-type transition. We were able to deter- We also plan to consider the influence of monopole
mine the polymerization transition line by specific heat and(chargedl particles on the self-organization of liquids having
order parametef®) determinations and found results semi- multipole interactions. The presence of charged particles at
guantitatively in agreement with the FA model of equilibrium the ends of dipolar chains would clearly influence both the
polymerization[13]. An examination of other properties of propagation of chain growth and the propensity of ring or
the SF indicated that the FA model is oversimplified and thebranched polymer formation. Charged particles could thus
model must be generalized to describe the formation of ringplay a powerful role in regulating the polymerization pro-
and other complex cluste§mutants’) that arise from the cess, and investigations of the influence of this coupling be-
dipolar interaction neglected in the analytical modeling.  tween multipolar and charge interactions on self-organization
We also show that clustering in the SF does not make thehould lead to many interesting effects.
determination of the second virial coefficient an ill-posed Finally, we note that charged particle fluids such as the
problem in those fluids as we first expected. The results ofestricted primitive mode(fluid composed of an equal num-
the exact analytic theory foB, agree remarkably with our ber of charged spheres of opposite sign and the same diam-
simulations. We were also able to give exact new results foetep [112] exhibit equilibrium polymerization since the
the theta temperature of the SF for arbitrary reduced dipolacharged particles have a strong propensity to dimerize or to
strengthu”. These exact results are useful for testing MCform multipole elementg108,109, which in turn polymerize

T,-T .
0L —p2ut _q), (18)
TB,LJ
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as in multipolar fluids. An equilibrium polymerization model - 1 ./3\.,
12 -1
has provided an apparently quantitative description of dy- I|m Bz T n “F -0 5)T
namic clustering in a fluid composed of spherical and point- o
like counteriong(a cartoon of polymer solution$110], and w 5) [ .

. - . . . ~ - T 3/2+ O(T 2) )
further studies of equilibrium polymerization in charged flu- 2

ids provide another fruitful direction in which to extend the

present work. Such systems provide a starting point for un- (A2)
derstanding the ubiquitous dynamic clustering observed ifrne additive third virial coefficient is not analytically trac-
polyelectrolyte solution§111]. table and must be determined by integration from the formal
relation[23]
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T T 2w 2
APPENDIX X J;) Sin 62d02J0 Sin 03d03f0 d(,lslfo d¢2
The dimensionless second virial coefficient is given by )
[23] X f 0 dpaf1of1afos, (A3)

ua where the anglesé,, ¢;) determine the orientations of the
B = ( 4 ) F(3> dipoles and where, if,s, andt are the distances between the
5=

T 4 centers of the three spheres,
__i 2*1“2”’2 2% (n )F<2n—2k—1) =3¢ +y?),
4N (S 2k+ 112k 4 2_,2 2,42
te=r(1-x)“+y-]. (A4)
— (: >3m The functionsf;;=exd -u;;/kgT] -1, whereu;; is the poten-

tial energy betweenandj and is given in Eqs(l) and(2).
Rowlinson[20] first evaluated the third virial coefficient but
unfortunately introduced an error depending on the dipole
where(k moment and _temperatu[él]. The numeriqal eval_uation_ of

m the integrals in Eq(A3) can be computationally intensive,
ing terms in powers off up to the first term containing.”, but progress has been made in improving efficiency by mak-
we have ing use of multidimensional nonproduct formul2].

“
X = s 2 : (A1)
m:

T 0 2m+1

) etc. denote binomial coefficients. Taking the lead-
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