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A diverse range of molecular self-organization processes arises from a competition between directional and
isotropic van der Waals intermolecular interactions. We conduct Monte Carlo simulations of the Stockmayer
fluid sSFd with a large dipolar interaction as a minimal self-organization model and focus on basic thermody-
namic properties that are needed to characterize the polymerization transition that occurs in this fluid. In
particular, we determine the polymerization transition lines from the maximum in the specific heat,Cv, and the
inflection point in the extent of polymerization,F. We also characterize the geometrysradius of gyrationRg,
chain lengthL, chain topologyd of the clusters that form in this associating fluid as a function of temperature,
T, and concentration,r. The pressure,P, and the second virial coefficient,B2, were determined, since these
properties contain essential information about the strength of the isotropicsvan der Waalsd interactions. Our
simulations indicate that the locations of the polymerization lines are quantitatively consistent with a model of
equilibrium polymerization with the enthalpy of polymerizations“sticking energy”d fixed by the minimum in
the intermolecular potential. The polymerization transition in the SF is accompanied by a topological transition
from predominantly linear to ring polymers upon cooling that is driven by the minimization of the dipolar
energy of the clusters. We also find that the basic interaction parameters describing polymerization and phase
separation in the SF can be estimated based on the existing theory of equilibrium polymerization, but the
theory must be refined to account for ring formation in order to accurately describe the configurational
properties of this model self-organizing fluid.
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I. INTRODUCTION

The increasing demand to manufacture structures at the
nanoscale has made it necessary to pursue new fabrication
strategies. Many researchers have taken inspiration from bio-
logical systems that exploit supermolecular self-assembly to
form complex hierarchical structures of specific function and
structure and have developed synthetic molecular systems
exhibiting this kind of self-organizationf1–5g. Others have
harnessed biological systems such as viruses to perform this
function f6g. This approach is highly attractive for the fabri-
cation of large-scale devices from nanoscale or molecular
components, but thecontrol of this type of process remains
largely a dream. Progress in this area requires an understand-
ing of the basic principles that underlie the molecular self-
assembly processf7–10g. Precise control of synthesis is re-
quired f1–3g, along with theoretical principles that can
predict what structures form and the conditions under which
they are stable.

In our view, a major shortcoming in the control of mo-
lecular self-organization for fabrication is the lack of under-
standing of the interplay between molecular potential inter-
actions swhich are often highly directional rather than
“unspecific” as in van der Waals interactionsd and the ther-
modynamics governing these self-organization transitions.
We also need to know the different kinds of thermodynamic
transitions that occursand their associated phase bound-
ariesd, the physical interaction parameters that govern them,

and the changing molecular dynamics that accompany these
transitions. It is also important to understand how these self-
organization transitions couple to phase separation and other
transitionsse.g., liquid crystalline orderingd to create new
hybrid or hierarchical transitionsf11–15g. Advances in this
field have ramifications for understanding biological pro-
cesses, as well as providing a versatile tool in developing
new materials, devices, and pharmaceuticalsf7g.

Our approach to this fundamental problem is to isolate a
minimal physical model of molecular self-organization and
to intensively investigate this model through a combination
of Monte Carlo and analytical modelingsmolecular dynam-
ics simulations are planned for a later staged. We selected the
classical Stockmayer fluidsSFd f16g for this purpose since it
involves a minimal description of the interplay of directional
sdipolard and isotropicsLennard-Jones van der Waalsd inter-
actions that have been suggested to fundamentally underlie
many supermolecular self-organization processesf17–19g.
This choice is also motivated by the existence ofexactana-
lytic results for the secondf20g and third virial coefficients
f20–23g of this model and by extensive previous MC simu-
lationsf24,25g of the critical propertiesscritical temperature,
critical composition, compressibility factor, etc.d relating to
phase separation in this model.

The SF model is also known through many studies to
exhibit supermolecular organization into dynamic polymer
chains through a head-to-tail alignment of the dipolar fluid
particlesf26,27g. There have been many recent articles at-
tempting to understand the coupling between phase separa-
tion and this molecular self-organization processf28–30g,
but many aspects about this model remain largely unresolved
because of the general difficulty of performing simulations
on associating fluids and the corresponding difficulty in theo-
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retically describing these intrinsically heterogeneous fluids
f29g. In the end, our choice of the SF as a model of molecu-
lar self-organization was dictated by the limitations of exist-
ing computational resources. Simulation of equilibrium prop-
erties of this type of self-organizing system must include a
minimal description of the essential characteristic of this pro-
cess, a competition between directional and isotropic inter-
actions.

Although the SF model is rather idealized, it does have
some interest as a model of real self-organization processes
of practical interest. It is a reasonable model of the stringlike
self-organization of magnetic nanoparticlesf26,27g and the
self-organization of molecular wiresf18g. These classes of
materials have a growing number of technological applica-
tions f17,18,29g. Certain bacteriaf31g, and presumably other
biological systems, exploit the self-organization of iron ox-
ides and iron sulfide particles which they synthesize for di-
rectional navigation, and these ferrofluids are quite reason-
ably described by the SF. Recently, it has been possible to
synthesize a wide range of magnetic nanoparticle systems
exhibiting chain formationf32,33g and directly observe this
process.

The SF also seems to be a promising model for the self-
assembly of synthetic peptides and other biological macro-
molecules into thermally reversible gels comprised of self-
organized fibers of molecular chains of these folded peptides
f34g. The formation of fiberlike structures also occurs in
amyloid proteins found in association with Alzheimer’s dis-
easef34g. Moreover, strong dipolar interactions have been
indicated to be essential in microtubule self-assemblyf35g, a
part of the essential cell machinery for many complex organ-
isms responsible for driving chromosome separation and fa-
cilitating molecular transport within the cell. As a final point,
we mention that the SF provides a rather idealized model of
water, which is characterized by having a rather large dipole
moment. Many of the unique properties of water derive from
its associating characteristicsf35g. The natural extension of
the SF model to include quadrupole interactionsf107g would
make the model an even closer mimic of this complex fluid.

There have been numerous previous studies of the SF. The
early work in the 1940s was concerned with the influence of
dipolar interactions on the thermodynamic properties of
gasesf20,20–23,36–38g and the deviation from the corre-
sponding states description of the critical properties of dipo-
lar fluids f39g. The prevalence of dipolar fluids to cluster at
equilibrium and the impact of this clustering on the proper-
ties of these fluids were appreciated from the beginning of
these investigationsf36,37g. The direct observation of chain
formation in ferrofluids of magnetic particles dispersed in
various organic solvents alerted researchers to the extent to
which these simple systems can self-organize into complex
structures and the sensitivity of these fluids to external mag-
netic fieldsf40,41g.

The difficulties that this clustering created for conven-
tional mean-field liquid-state theories were slow to develop,
but simulation soon pointed to serious failures of models that
have proven their value for homogeneous fluidsf24g. The
intense activity in simulating the SF and related idealized
models of dipolar fluidsssoft-sphere-dipole fluidsf42g, dipo-
lar hard-sphere modelf43,44g, spherocylinder with dipolar

interactionsf45g, etc.d has come as a consequence of the
realization that these fluids can exhibit thermodynamic and
critical properties completely unlike those of “simple” fluids
f46,47g. A substantial impetus to studying the SF arose in
particular because of two remarkable recent findings:sid the
observation of ferroelectric behavior in simulations of dipole
soft-sphere fluid in the liquid state in association with chain
formation f42g, and sii d the apparentdisappearanceof the
critical point for phase separation when the magnitude of the
dipolar interaction became critically large relative to the
magnitude of the van der Waals interaction energy
f24,25,45g. These works have set off an avalanche of activity
relating to the SF and related dipolar fluid models.

Since the polymerization of the dipolar particles is clearly
at the origin of many of the peculiar properties of dipolar
fluids, there have been many recent studies attempting to
characterize this transition as a variety of “equilibrium poly-
merization” f28,30,48,49g. Teixeira et al. f29g give a good
review of the successes and limitations of these efforts. This
previous work clearly indicates that associating dipolar fluids
are very interesting, but computational methods of sufficient
power to simulate or to analytically model these fluids do not
currently allow for a resolution of the many outstanding
questions.

The present work is an extension of previous efforts, but
our work has a different focus. Our first concern is to imple-
ment an efficient numerical sampling method for simulating
the SF at low density and to determine the location of the
polymerization transition line. We determine these transition
lines as an experimentalist would approach the problem and
strive to avoid any bias regarding the theoretical interpreta-
tion of this transition, since a reliable theory does not clearly
exist. Recent theoretical computations by Dudowiczet al.
f11,12,30g and othersf28,48,49g suggest models that might
apply, but we do not presume the correctness of these models
before they are validated by reliable simulations.

The exact relation between the transition curves govern-
ing the chain formation process and the molecular interaction
parameters is a key concern in our investigation. Notably the
polymerization transition lines have never been determined
before in the SF. We illustrate the utility of the polymeriza-
tion transition determination for the quantification of the
properties of the self-organizing fluid by showing that a uni-
versal description of the chain length as a function of tem-
perature and concentration can be obtained by introducing a
reduced temperature scale based on the concentration-
dependent location of the polymerization transition. Equation
of state ideas are evidently a powerful tool describing mo-
lecular self-organization as well as describing the critical
properties of simple fluids.

In the course of our characterization of the density,r,
dependence of the chain length,L, we found that this prop-
erty scales in proportion tor rather thanr1/2, as in analytic
models suggested to describe this type of polymerization
f11,12,50g. The exponent describing theT dependence ofL is
similarly almost doubled from the “expected” value. Unfor-
tunately, this indicates that all the proposed models of equi-
librium polymerization in the SF are inadequate for a com-
pletely quantitative description of the SF. Further
investigation revealed that the SF with a strong dipolar inter-
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action exhibits topological transitions between linear and
ring polymers upon cooling. The character of this transition
appearsqualitatively inconsistentwith the transition between
linear and branched chains predicted by Tlutsy and Safron
f51g, howeverssee Sec. III Cd.

Ring formation occurs at low temperature simply because
this minimizes the energy of the dipolar chainf52g. Since
this topological transition between chain and ring polymers
was not initially anticipated and this phenomenom is not
incorporated in current models of equilibrium polymeriza-
tion in this fluid, we examined the configurational properties
of the chains in greater detail. We observed a bimodal distri-
bution of the radius of gyration of the polymers correspond-
ing to coexisting linear and ring structures and found that the
Rg mass scaling exponent was consistent with polymer
chains with excluded volume interactions and some degree
of stiffness arising from the dipolar interactions. We also
note that the mass scaling exponent describing the swelling
of the polymer chains is consistent with an equilibrium po-
lymerization formulation of theXY model in which directed
polymer loops geometrically form in association with the
transitionf53–55g.

Finally, we examined the pressure and second virial coef-
ficient of the SF since these and related properties provide
essential experimental information regarding the magnitude
of both the van der Waals and the directionalsdipolard inter-
actions driving the molecular self-organization. We were able
to calculate the Boylesor “theta”d point exactly for the SF
model for arbitrary dipolar and van der Waals interactions,
and we validated our simulations against exact analytic cal-
culations of the second virial coefficientf16,20g as a function
of T and the dipolar interaction. These results show that a
reliable estimate of the van der Waals interactions can be
extracted from measurements of the pressuresor compress-
ibility d at low concentrations, despite the slow variation of
the pressure at higherr arising from the polymerization pro-
cess.

In summary, we have simulated the SF model over a wide
range ofT and r using an efficient computational method,
and we have determined the essential thermodynamic param-
eters that govern the self-organization of the particles into
chain structures by mapping out the polymerization transi-
tion line as a function ofT andr. We show that the van der
Waals interaction parameter governing phase separation can
still be determined in the conventional way from the second
virial coefficient ofP.

II. SIMULATIONS

We perform canonical ensemble Monte CarlosMCd simu-
lations of the Stockmayer fluid in cubic simulation boxes
with periodic boundary conditions. In the Stockmayer model
f16g, two particles interact via the Lennard-JonessLJd poten-
tial with an additional point dipole at each particle center.
The interactions between particle pairs are truncated at half
the box length. Using this boundary condition, our evalua-
tions of the second virial coefficientsFig. 15d agree with the
exact analytical solution and with sample runs using the full
Ewald summation method. The use of this cutoff procedure

should be reevaluated for simulations at higher densities than
reported here. The LJ contribution to the total energy is given
by

uLJ = 4«FS s

r ij
D12

− S s

r ij
D6G , s1d

where r ij is the distance between particlesi and j ,« is the
magnitude of the potential minimum, ands is the separation
at which the energy vanishes. The simulation boxes contain
256 particles and have edges ranging in length from 23.4s to
64.5s so that the density range is 0.003 18ør /rc,LJ
ø0.0637, whererc,LJ=0.316s−3 is the critical density of the
LJ fluid f56g. All densities reported in this paper are normal-
ized by rc,LJ and all temperatures are normalized byTc,LJ
=1.31« /kB, the LJ critical temperaturef56g. This normaliza-
tion procedure is used to facilitate comparison with the lat-
tice models of equilibrium polymerization described later in
the text.

The dipolar contribution to the energy is given by

udipole=
mW i · mW j

r i j
3 − 3

smW i · rWi jdsmW j · rWi jd
r ij

5 , s2d

wheremW i is the dipole moment of particlei and rWi j =rW j −rWi is
the separation vector between particlesi and j . In the litera-
ture, it is conventional to define a dimensionless dipole mo-
ment, m* =m /Î«s3. The total energy is given byu=uLJ
+udipole. For all simulations reported here, the magnitude of
the dipole strength is given bym*2 =36 unless otherwise
stated. With this choice of dipole strength, the dipolar con-
tribution to the minimum in the potential is roughly 100
times that of the LJ contribution.

The anisotropy in the potential is illustrated in Fig. 1,
which shows the minimum of the Stockmayer potential as a
function of fixed relative orientations of the two particles for
m* =6. The deep minimum corresponds to a head-to-tail
alignment of the dipoles and a particle separationr
=0.8295s. The potential at this minimum isumin=−100.7«

FIG. 1. sColor onlined umin
* =uminsu ,fd /« for the Stockmayer

model withm*2 =36.
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for this choice ofm* . More generally, the magnitude of this
potential minimum,«m* , can be described exactly by

«m* = 4«Fm*2

2
S s

rmin
D3

+ S s

rmin
D6

− S s

rmin
D12G , s3d

rmin

s
= F 1

3m*2S22/3l − 4 +
21/38

l
DG1/3

, s4d

l = f27m*4 + 3m*2Î3s27m*4 − 32d − 16g1/3, s5d

where« is the magnitude of the potential minimum form*

=0 sthe LJ minimumd. It can be shown that«m* has a nonana-
lytic dependence onm* and has the limiting asymptotic be-
havior

lim
m*→`

«m* /« , 3m*8/3/4. s6d

We can obtain a good approximation to«m* by simply adding
an additional nonanalytic term and a constant and fixing their
values by demanding that the exact value of«m* be recovered
for m* =2 s«m* =8«d andm* =0 s«m* =«d,

«m* /« < 1 + 0.888 07m*4/3 + 3m*8/3/4. s7d

This expression agrees with the exact result from Eq.s3d to
within an accuracy of 2% for arbitrary positivem* , apart
from the ranges0.08,1.4d over which a crossover from LJ
dominated to dipole-dominated potential behavior occurs
f25g. Equations7d provides a general estimate of the “stick-
ing energy” in our comparisons with the equilibrium poly-
merization model below and is a basic input into this type of
analytic model. The nonanalytic dependence of«m* derives
from the soft nature of the potential core interaction in the LJ
fluid, and we contrast Eq.s7d with the corresponding result
for hard spheres with a point dipolar interaction where
«m* ,HS/«=2m*2. The hard-sphere expression for«m* ,HS is a
reasonable approximation for the SF provided thatm* is not
too large or too smallsi.e., to within 2% for 1.61,m*

,2.52d and is exact form* =2.
The minimum energy configuration of a finite, un-

branched polymer is a ring, but entropy effects favor open
chain configurations at high temperaturesf52g. The stiffness
of the chain is related to the shape of the energy basin in Fig.
1. At intermediateT, there is a coexistence of rings and
chains. Because branching “Y-like” junctions have a lower
energy than free ends, connected networks are likely to also
form at lower temperatures as transient structuresf51,57g.
Thus, the particles associate to form linear chains, rings, and
hybrid branched structuress“clusters”d in dynamic equilib-
rium f27,51,57g. Ring-chain equilibrium has also been ob-
served in models of reversibly associating polymer solutions
f58g.

At gas phase densities, the simulation of strongly associ-
ating systems can present challenges for traditional simula-
tion techniques. The strong binding energies between associ-
ated particles and large distances between nonassociated
particles can make sampling of important regions of configu-
ration space difficultf59g. The time required for particles to
undergo an association-disassociation transition can be very

long compared to typical molecular-dynamics simulation
times. There are MC algorithms that can overcome these
difficulties, however.

In this work, we use the aggregate bias Monte Carlo al-
gorithm f60g to improve the sampling of relevant regions of
configuration space and enhance the formation of clusters.
This method allows for the simulation of chain, ring, and
branched forming molecules. At the heart of this algorithm is
an intrabox swap move that is targeted at sampling the for-
mation or destruction of clusters. We also implement the
simple translational and rotational moves to explore nearby
regions of phase space.

When implementing the simulation of strongly associat-
ing systems, proper statistical sampling can be difficult at
low temperatures where configurations may become trapped
in local energy minima. Traditional MC algorithms may not
be capable of sampling the relevant regions of phase space
within a reasonable amount of time. Parallel-tempering
f61,62g is a useful technique that has been used in the study
of thermodynamic transitions and can be efficiently applied
to the simulation of associating fluids.

In this study, each simulation is performed within the
parallel-tempering framework. This method employs a set of
canonical ensemble simulation boxes running in parallel at
different temperatures, but with the same number of mol-
ecules and the same density. Boxes are arranged in order of
increasing temperature, and periodically, random adjacent
pairs of boxes are chosen and a swap move is attempted. In
the present study, 18 boxes were used at each density and
adjacent boxes differed in temperature byDT/Tc,LJ=0.229.
This allows adequate swapping while still maintaining a rel-
evant T range within the constraint of available computa-
tional resources. In a successful swap move, the atoms in one
box are exchanged with those in the other box. Effectively,
configurations take a one-dimensional random walk inT
space. Swap moves are accepted with a probability given by

pa↔b = minf1,exphDUDbjg, s8d

whereDU=Ub−Ua is the potential energy difference of the
systems, andDb=1/skBTbd−1/skBTad.

Figure 2 shows the temperature of an example configura-

FIG. 2. Temperature versus MC step for a representative replica.
The TF and Tp sdiscussed laterd are shown as dotted lines for
reference.
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tion versus MC step during a simulation run as it steps from
box to box. It is evident that configurations are sampling the
full temperature range within the parallel-tempering algo-
rithm. This allows lowerT simulations to benefit from the
faster motions available at higherT, thereby leading to faster
equilibration. In addition, the swapping of configurations re-
duces the time spent in local minima and allows the system
to explore phase space more effectively.

To ensure that configuration swapping moves are accepted
at an efficient rate, adjacent boxes must be close enough
together inT space to allow their energy histograms to suf-
ficiently overlap. Figure 3 shows the adequate overlap of the
energy histograms of the lowest density box at a temperature
sT/Tc,LJ=6.87d near its polymerization temperature
sTp/Tc,LJ=6.72d and that of two adjacent boxessT/Tc,LJ

=6.64 and 7.10d. At this density, the energy histograms are at
their sharpest and at all other densities the overlap of adja-
cent energy histograms increases at the polymerization tran-
sition. Figure 3 thus shows a worst case scenario for simu-
lations in this study. Each system was equilibrated for a
minimum of 107 MC steps and thermodynamic averages
were computed using a minimum of 107 MC steps, where an
MC step consists of an attempt to translate and rotate every
particle in the box. Parallel-tempering swaps were attempted
every 25 MC steps.

III. RESULTS

The present paper specifically avoids an investigation of
the critical properties and analytic modeling of the impact of
the polymerization process on the critical properties of the
SF since these properties have been a topic of intensive study
in previous workf24,25,28–30g. We have chosenm* to equal
a value larger than the critical valuem* <5 for which phase
separation has been claimed not to exist in the SFf24,25g.
We saw no evidence for conventional phase separation in our
computations in the parameter regime we investigated, so
that we feel we have successfully avoided questions relating
to the phase separation of the SF. We note, however, that the
former MC simulations of the SF were based only on simple
Gibbs MC sampling methods, and the equilibration times
were short by current standards. Thus, the characterization of

the critical behavior of the SF should also be revisited with
the computational methods described in the present paper, or
by alternative methodsse.g., density of statesf63gd that have
recently proved their value in simulating supercooled liquids
and other kinetically sluggish thermodynamic systemsf64g.

A. Polymerization transition lines

The polymerization transition line is basic to understand-
ing the thermodynamic properties of the type of particle self-
organization observed in the SF. This type of transition line
is comparable in importance to phase boundaries in ordinary
phase separation because they contain basic information
about thermodynamic interactions responsible for the transi-
tion. Such transition lines are well known in micelle forming
liquids f65–67g, but also occur much more broadly in sys-
tems undergoing living polymerizationfe.g., polysa-methyl
styrened in solution in the presence of a chemical initiator
f68gg, thermally activated polymerizationsactin, sulfurd
f69,70g, clustering in polymer nanocompositesf71g, and
thermal reversible gelation of polymersf72–77g, colloids
f78–80g, and low molecular mass organogelsf17–19g. The
location of the polymerization transition temperature as a
function of concentrations“polymerization line”d has never
before been determined in the SF and we first focus on this
quantity.

The most common way to define the polymerization tran-
sition line is through the constant volume heat capacity,Cv
f81–83g. Normally, the transition between a particle-
dispersed state and a state in which the particles are orga-
nized into specific structures is accompanied by a maximum
in the heat capacity. TheT where this maximum occurs is
taken as the “polymerization” or “clustering” transition tem-
perature,Tp. We thus considerCv for the SF as a function of
T andr.

Before calculatingTp as a function ofr, we note that
there is another conventional criterion determining the poly-
merization transition line that is utilized by experimentalists
because of the difficulty in measuringCv f69,81,82g. The
polymerization transition line is also defined through the ex-
tent of polymerization,F,

F = Np/N, s9d

whereNp is the number of associated particles andN is the
total number of particles. Two particles are considered to be
in a cluster if the separation distance is less thanra=1.5s,
i.e., approximately where the interaction energy is at least
20% of the potential minimum. The location of the transition
lines is expected to be insensitive to small changes in the
definition of ra. The transitionT is defined as the inflection
point in F as a function ofT, and we denote this quantity in
the present paper asTF. The propertyF is an “order param-
eter” for the polymerization model describing the extent to
which the polymerization transition has gone to completion
f13,81–83g.

The constant volume heat capacity,Cv, is calculated from
the fluctuations of the potential energy at each temperature
and density. The heat capacity is given by

FIG. 3. Energy probability distribution functions forT/Tc,LJ

=6.64,6.87,7.10 atr /rc,LJ=0.00318. At this density,Tp/Tc,LJ

=6.72 andTF /Tc,LJ=6.87.
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Cv =
1

NkBT2fkU2l − kUl2g. s10d

The constant volume heat capacity can also be calculated by
directly differentiating the potential energy with respect toT,

Cv =
1

N

] U

] T
. s11d

Figure 4 shows the heat capacity as a function of temperature
for three densities calculated using Eqs.s10d and s11d. The
quantitative agreement between the two methods of comput-
ing Cv is encouraging. We observe that the peak in the heat
capacity occurs at lowerT for lower densities, as predicted
by the theory of equilibrium polymerizationf83g. A similar
pattern of behavior was observed recently for model nano-
particles clustering in a polymer melt by molecular dynamics
simulationsf71g. As discussed by Starret al. f71g, this trend
is quite distinct from what we would expect if the “cluster-
ing” were due to phase separation. At higher densities, the
peak becomes broader. The inset of Fig. 4 indicates that the
magnitude ofCv is increasing with decreasingr. This is an
indication that a vapor to liquid phase transition is not occur-
ring. The T at which the peak occurs at each density is
termed thepolymerization temperatureand is denoted byTp.

Figure 5sad plots the extent of polymerization,F, versus
temperature for a number of densities. The transition tem-
peratureTF is defined as the inflection pointT in the F
versusT curve. At low temperatures, nearly all the particles
can be incorporated into individual clusters, while at high
temperatures most particles exist as free monomers. It is
stressed that the monomer units are inthermodynamic equi-
librium with the clusters. The clusters grow or diminish in
size as particlessor other clustersd join or leave the clusters.
Similarly to Cv, the transition becomes sharper and grows at
lower densities. Figure 5sbd showsF as a function ofr at
constantT. The polymerization transition can proceed at con-
stantT by increasing the density. From Fig. 5sbd we see that
the transition is sharper at lowerT.

It has often been assumed that the polymerization transi-
tion, as defined throughCv, is equivalent to the polymeriza-

tion transition temperature determined from the inflection
point of F f81,82g. This expectation is apparently based on
the exact coincidence of these transition points in the suc-
cessful mean-field theory of living polymerization; this rela-
tion holds regardless of the initiator concentrationf13,83g.
Recent work of Dudowiczet al. f30g has indicated that these
transition temperatures arenot the same in more general
models of equilibrium polymerization, however. In particu-
lar, the analytic theory of equilibrium polymerization without
the constraint of an initiatorstermed the freely associating or
FA modelf30gd f50g has been suggested to describe the equi-
librium polymerization in the SFf28,30,48,49g. In this
model, every particle can freely associate with any other par-
ticle without restriction, andTF is found to occur substan-
tially aboveTp f83g.

In Fig. 6, we show the values ofTp andTF that we deter-
mined from our simulationsssee Figs. 4 and 5d. We see that
TF is indeed larger thanTp over the density range investi-
gated and that these curves tend to come together at low
density. Comparison to Fig. 4b of Ref.f83g demonstrates
good qualitative agreement between the shapes of the transi-
tion lines predicted by the FA model and the SF.

Unfortunately, there is no closed exact analytic formula
describing the polymerization transition line in the FA model
f83g, but there is a simple estimate of the polymerization
transition line in the related model of “living polymeriza-
tion” in the limit of vanishing initiatorf13,83g. In this model,
the polymerization transition linesTpd is described by the
so-called Dainton-Ivin equationf85g,

FIG. 4. Constant volume heat capacity,Cv, versusT. Filled sym-
bols are from derivatives of the potential energy and open symbols
are from fluctuations of the potential energy. Inset shows peak val-
ues ofCv versusr. Estimated uncertainties according to the method
of Ref. f84g are on the order of the size of the symbols.

FIG. 5. Extent of polymerization versus temperaturesad and
versus densitysbd. Arrows denote increasingr andT, respectively.
The estimated uncertaintiesf84g for F are less than 1%.
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TpsDId =
Dhp

Dsp + kB ln r
, s12d

whereDhp andDsp are the changes in the enthalpy and en-
tropy for the polymerization associationsreactiond at a given
concentration. Equivalently, Eq.s12d defines a “critical poly-
merization concentration,”rc having an Arrhenius form,

rc = A expsDhp/kBTd, s13d

where A=exps−Dsp/kBd. Equation s12d indicates a mono-
tonic increase inTp with r and is widely used to describe
clustering transitions in equilibrium polymerizationsliving
polymerizationf81,82g and thermally activated polymeriza-
tion f17–19,74gd, as well as gelation, micellationf65,66g, and
other varieties of molecular self-organization at equilibrium.
This Arrhenius form is often found to fit clustering transition
data very well as a matter of phenomenology. The generality
of Eqs. s12d and s13d in describing a wide range of self-
organization processes other than the polymerization of lin-
ear chains supports the contention of universality in the ther-
modynamics of associating fluids suggested by Dudowiczet
al. f11,12,83g.

Dudowicz et al. f13g find that Eqs.s12d and s13d also
describe theTp andTF transition curves of the FA model of
equilibrium polymerization, but the interpretation of the
model energetic parameterssDhp,Dspd are not exactly the
same as in the Dainton and Ivin modelf85g. The problem is
that the values ofDhp andDsp can be “renormalized” in the
fit to the DI equation from their exact values in the FA
model.

The analytic theory of Dudowiczet al. f13g predicts that
the transition temperatureTF remains close to the Dainton-
Ivin transition curve and comparison of the simulation data
to the DI curve should yield the most reasonable energetic
parameters for the SF fluid. In Fig. 6, the “sticking” energy,
Dhp, is fixed in this expression to equal the potential energy
minimum scontact energyd for SF particles in a head-to-tail
arrangement, i.e.,Dhp=−100.7«. A previous paper compar-
ing the phase behavior of the SF to the FA model estimated
Dsp/kB to be roughly in the range −5 to −10, depending on
the extent of chain stiffness, and similar order-of-magnitude

estimates ofDsp were noted years ago by Rowlinson for real
dipolar gasesf20g. The dashed line in Fig. 6 shows the DI
equation withDhp fixedby the contact energy of the molecu-
lar potential andDsp/kB fitted to the value −4.5. A better fit
ssolid lined of the DI equation to theTF data is obtained by
letting both Dhp and Dsp vary. This procedure yieldsDhp
=−108« andDsp/kB=−5.17. The agreement with the expec-
tations of the equilibrium polymerization model is highly
encouraging. The former best estimate ofDsp/kB for the SF,
based on a study of phase separation in this model for lower
m* and an assumption that the chains were stiffsflexibled, is
Dsp/kB=−5.9s−8.5d.

The renormalization of the energetic parameters govern-
ing theTp transition line is predicted to be more appreciable
than for theTF transition linef13g. A fitting of the DI equa-
tion to the FA-model prediction ofTp f13,86g indicates that
the apparent value ofDhp obtained from this fit is related to
the true value ofDhp by the approximationsassumption of
flexible chainsd

Dhp
app/Dhp

tr = 1.014 + 1.602 exps0.327Dsp/kBd, s14d

where the maximum deviation in the approximation is less
than 1.4 % for −28.7,Dsp/kB,−4.6. ForDsp/kB=−4.5 and
Dhp

tr=−100.7«, this relation predicts thatDhp
appobtained from

a fit to Tp should equal −132«. fNotably, this effective value
of Dhp is not a correct estimate of the enthalpy of associa-
tion, but rather an apparent value obtained by fittingTp data
to Eq. s12d.g A fit of the DI equation to theTp data in Fig. 6
ssolid lined yields Dhp

app=−142«, which is in reasonable
agreement with Eq.s14d. This finding provides us with fur-
ther encouragement that an equilibrium polymerization
model can provide a quantitative description of the polymer-
ization process in a molecular fluid.

One of the shortcomings of our current description of
self-organization in the SF is the uncertainty in the estima-
tion of Dsp. This is a basic problem in describing equilibrium
self-organization processes that has received rather little se-
rious attention. Economou and Donohuef87g have provided
the basis for attacking this problem by showing the formal
equivalence between chemical association theory and the
classic liquid state theory of associating fluids developed by
Wertheimf88g. This correspondence provides a direct formal
route to calculatingDsp through liquid state correlation func-
tions, although the approach has not yet been implemented.
A fully predictive theory of equilibrium polymerization in
terms of microscopic potential parameters requires the com-
putation ofDsp by such a method.

B. Average degree of polymerization

The next most basic property of a fluid undergoing equi-
librium polymerization is the average degree of chain poly-
merization,L. This quantity is defined byf13,83g

L =

o
i=1

N

iNi

o
i=1

N

Ni

, s15d

wherei is the number of particles in a given chain andNi is
the number of chains of lengthi. In Fig. 7, we showL as a

FIG. 6. Transition temperatures versus density. Lines are fits to
the DI equation.
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function ofT for a range ofT, and we find a family of curves
describing the general increase ofL upon cooling. At higher
densities, the increase inLsTd occurs faster asT is lowered,
reflecting ther dependence of the polymerization transition.
The curves in Fig. 7 notably have a similar shape, and it is
natural to seek a reduced variable description.

Our discussion above indicates that, contrary to the opin-
ions expressed in former work, the transition temperatureTF

has a more fundamental significance as a definition of the
transition point than the transition curve defined throughCv,
regardless of the detailed nature of the association process.
We thus define a reduced temperatureT/TF and examine the
extent to which the transition curves shown in Fig. 7 reduce
to a single master curve. The result of this data reduction is
shown in Fig. 7sbd. This definition of reduced temperature
collapses theL data to a nearly universal function. An im-
portant characteristic of equilibrium polymerization is the
near constancyf13g of L at the transition temperatureTF;
LF;LsTFd<2±0.5 and estimates ofLF are shown in the
inset to Fig. 7sbd. Note thatLF is relatively small because of
the large weight given to monomers in the determination of
this average. The chains are actually highly polydisperse and
this aspect of the SF has been investigated in previous work
f28,48,49g. The near constancy ofLF can be understood
from the FA equilibrium polymerization model where also
LF<1.5 andLsT=Tpd<3, independent ofr f86g.

The dependence of theL on ther is shown in Fig. 8. At
the lowestT, the degree of polymerization is nearly linear
with respect tor. However, at higherT the linearity begins at

higher densities. The linear regions generally coincide with
the relatively flat regions in the pressure versus density
curvesssee Sec. III Dd. The concentration dependence ofL
reflects ther dependence ofF shown in Fig. 5. In the limit
of vanishing concentration, we must haveL=1, but L lin-
early increases beyond someT-dependent concentration,rc,
where polymerization initiates. Thus, we describeLsrd by

L = 1 +asTdsr − rcdr . rc. s16d

We note that more accurate determinations of the “critical
polymerization concentration,”rc, can be obtained from Eq.
s13d rather than Eq.s16d due to the uncertainty involved in
determining the intercepts in Fig. 8.

Our examination ofL as a function ofr gives us our first
hint that the simple FA model of equilibrium polymerization
provides an overly simplified quantitative description of
equilibrium polymerization in the SF. The data in Fig. 8 in-
dicate thatL at a fixedT has a nearlylinear dependence onr
rather than the well-known nonanalytical scaling, i.e.,L
,eDhp/2kBTr1/2, predicted by the FA modelf13,50,89,90g.
This is of physical importance because a near-linear depen-
dence ofL on concentration,r, has often been reportedf91g
in wormlike micelles which have also been modeled by the
FA equilibrium polymerization modelf50g. Clearly, the dipo-
lar interactions are leading to important qualitative effects
that are not included in highly simplified models of equilib-
rium polymerization such as the FA model.

The T dependence ofL also deviates substantially from
the predictions of the FA model. In Fig. 9, we show the slope
asTd describing the increase inL with r. The FA model
predicts thatL should increase in the classical fashion
f13,50g, LsFAd,eDhp/2kBT, at a fixedr, but the data in Fig. 9
indicate that the exponent is nearlytwice as large as the FA
prediction, as in the case of the concentration scaling expo-
nent. Specifically, the solid line corresponds to the scaling
relation a,expsE/kBTd, where E=−91.9« and the dashed
line indicates the result of fixingE by the SF intermolecular
potential minimum value,E=Dhp=−100.7«. How can this
exponent doubling be understood?

FIG. 7. Chain length of polymer. Average chain length versus
temperaturesad. Average chain length versus temperature normal-
ized byTF sbd. The inset ofsbd shows the average chain length at
T=TF.

FIG. 8. Average degree of polymerization versus density. The
arrow indicates the direction of increasing temperature. The esti-
mated uncertaintiesf84g in L are less than 0.5% and are not in-
cluded for clarity.
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Dudowiczet al. f13,83g have noted that a near linear de-
pendence onr occurs in equilibrium polymerization models
in which the polymerization process occurs subject tocon-
straintsse.g., chemical initiation and thermal activationd that
create a bottleneck in the polymerization kinetics. Curiously,
such kinetic constraints actually lead to a muchsharperpo-
lymerization transition than in equilibrium polymerization in
the absence of these constraintssFA modeld. This comparison
is made for a typical experimental value of the initiator con-
centration, which is quite small so the transition is sharp
snearly a second-order phase transitiond. Later work showed
this same behavior in equilibrium polymerization with a low
extent of thermal activation, see Fig. 1b off13g. Because
some unknown “constraints”sbranching effects, etc.d may be
acting in the SF, we examine the configurational properties
of the polymer chains.

C. Radius of gyration as a function of chain mass

Chain branching is an obvious potential source of devia-
tion from the linear chain model in the SF description if this
phenomenon becomes prevalent. We thus examine system
configurations in the SF at lowerT to determine if these
structures are apparent. Such structuressrings and “clusters”d
were anticipated in the original work of De Gennes and Pin-
cus f27g, and there have been recent experimentalf31–33g,
simulationf13g, and theoretical worksf51,57g addressing the
nature of this branching process. At present, there are few
well-equilibrated data ind=3 for which this question can be
considered, however.

Figure 10 shows configuration snapshots atr /rc,LJ
=0.006 37 for four different temperaturessT/Tc,LJ=7.56,
7.10,6.41,5.95d. These snapshots are 2D projections of the
3D configurations. A transition from predominately linear
chainssT.Tfd to predominately ring polymerssT,Tpd evi-
dently occurs upon cooling. This topological transition is a
consequence of the system evolving to a state with the low-
est energysringsd f52,92g.

Quantitative evidence for this topological transition shows
up in the distribution function for the chain radius of gyra-
tion, Rg, for the polymers in the transition regionsT/Tc,LJ
=6.87, r /rc,LJ=0.0102d where a large number of polymers

and rings coexist. Figure 11 indicates that this distribution
function is bimodal with peak position nearRg

* =0.97 sringsd
andRg

* =1.55 slinear chainsd for N=7, whereRg
* =Rg/s. For

simple random walks of rings and linear chains, the ratio of
theseRg

* is simply equal to 1/Î2<0.71 while this ratio for
SF particles in their idealsring and linear chaind minimum
energy configuration is 0.54. The observed ratio of 0.63 lies
in the middle of these two extremes. We thus infer that the
chains and rings can be roughly described as random walks,
but with perhaps some swelling due to excluded volume in-
teractions or chain stiffness induced by the deep minimum of
the dipolar interactionf27g.

We next examine the configurational characteristics of the
SF more directly in Fig. 12, where we showRg

* versus the
polymer mass,N. This figure showsRg

* for a range ofN
values at a fixed density,r /rc,LJ=0.0102, as open circles and
data for all the other densitiessleading to better averaging for
long chain lengthsd as the small dots. A convincing power-
law scaling seems to establish itself forNù15 and a fit of

FIG. 9. The parametera obeys an Arrhenius temperature depen-
dence to a good approximation.

FIG. 10. 2D projection of 3D system configurations for
r /rc,LJ=0.00637.sad T/Tc,LJ=7.56, sbd T/Tc,LJ=7.10, scd T/Tc,LJ

=6.41, sdd T/Tc,LJ=5.95. At this density,TF /Tc,LJ=7.25 and
Tp/Tc,LJ=7.02.

FIG. 11. Radius of gyration probability density forN=7 at
T/Tc,LJ=6.87 andr /rc,LJ=0.0102. Representative configurations
for a ring and a linear chain are shown.
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theRg
* data to a power lawsRg

* ,Nnd yields an apparent mass
scaling exponentn<0.68±0.04. The uncertainty is estimated
by considering a range, 10øNø70, from whichn can be fit.
Our estimate of uncertainty is the range ofn found over this
interval. It is notable that this apparent exponent is insensi-
tive to T andr and that its value is substantially larger than
a self-avoiding walk value,nSAW=0.59 f93g.

It is likely that the apparent exponentn is relatively large
in comparison to the self-avoiding walk exponent because of
semiflexibility effects imparted by the dipolar interaction as
mentioned above. This would lead to a slow crossover to the
SAW scaling in the long chain asymptotic limit,N→`, as
seen for uncharged polymers with “bulky beads”f94,95g.

There is another possible interpretation of the exponentn,
however. The polymerization transition of rings with direc-
tional interactionssconsistent with head-to-tail chaining in
the SFd is exactly described by theXY model f54,96,97g for
which the correlation length critical exponent,nxy, is calcu-
lated by RG theory and series analysis to equalnxy=0.67 in
three dimensionsf98g. Recent computations have indicated
that theRg exponentn for the polymers that form in conjunc-
tion with the XY model phase transition equals the correla-
tion length exponent of this modelf99,100g, so our finding
n=0.68 is highly suggestive. Further simulations with a
larger box size and a larger range ofr andT are needed to
confirm this interesting possible interpretation of theRg ex-
ponent.

The self-organized structures can be divided into three
topological categories: chains, rings, and branched struc-
tures. A chain is characterized by a cluster which has exactly
two particles with one nearest neighbor each and all other
particles having exactly two nearest neighbors. A ring is
characterized by a cluster in which every particle has exactly
two nearest neighbors. A branched structure is neither a
chain nor a ring. Two particles are considered neighbors if
their separation distance is less thanra=1.5s. In Fig. 13, we
observe that the number fraction of chain structures drops
precipitously through the polymerization transition, while the
number fraction of rings sharply increases upon polymeriza-
tion. sThis effect has been seen experimentally in magnetic
nanoparticle fluidsf33g. This trend is visually apparent in

specific realizations of the fluid asT is loweredsFig. 10d. A
feature that is not so clear from the molecular “snapshots” is
that there are quite a few clusters that cannot neatly be clas-
sified as either rings or chains. De Gennes and Pincus briefly
refer to such “cluster” structuresf13,27g, but we prefer to
call these “mutants.” Some representative topological repre-
sentations in two-dimensional projection are shown in the
inset of Fig. 13. The number density of these objects actually
exceeds those of the rings at higherT in Fig. 13, but at low
temperatures below the polymerization transitionsTF /Tc,LJ

=8.02d the number density of the rings exceeds that of the
mutants. We note that the concentration of “defect” struc-
tures in the model of Tlutsy and Safranf51,57g decreases
with decreasingT, rather than increasing upon cooling as in
Fig. 13, so that this model is apparently inadequate to de-
scribe the topological transition in the SF. The traditional
view of ring formation based on the driving force of mini-
mizing the chain energy through the formation of the flux-
closure ringsf92g apparently provides the correct leading-
order description of the origin of the topological transition.

D. Pressure and the theta point

Much of the geometrical complexity of self-organizing
systems derives from an interplay between directional inter-
actions and isotropicsvan der Waalsd interactions. The dis-
cussion in previous sections emphasizes the impact of the
directionalsdipolard interactions in the SF by taking the ratio
of the dipolar to the van der Waals interactions strengthsm*2

to be largesm*2 =36d, which makes the polymerization tran-
sition T higher than theT for phase separationf30g. This
choice allowed us to study the polymerization transition in
isolation from phase separation. In many systems, these tran-
sitionscoupleto create a rich phase separation phenomenol-
ogy that is quite unlike simple “unassociated” fluidsf13g.
This situation requires that we determine the isotropicsvan
der Waalsd interactions governing phase separation in addi-
tion to the interactions characterizing the directional interac-
tions sDhp,Dspd. In principle, the determination of the inter-
action parameters governing phase separation should follow

FIG. 12. Radius of gyration versus molecular weight on a log-
log plot at T/Tc,LJ=6.85. The open circles are forr /rc,LJ=0.0102
and the closed symbols are an average across all densities. The
slope of the linear fitssolid lined to largeN is 0.68. The estimated
uncertaintiesf84g for Rg are less than 1%.

FIG. 13. Number fraction of chains, rings, and other branched
structures as a function of temperature atr /rc,LJ=0.0191. The inset
shows four examples of the commonly observed mutant structures.
These structures represent the chain topologies from actual polymer
clusters.
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the same procedure as unassociated liquids, but some special
problems arise in the associated fluids that require discussion
if this task is to be effectively accomplished.

A near constancy of the osmotic pressure as a function of
r in the absence of phase separation is a commonly observed
characteristic of associating fluids generallyf101–103g, and
this phenomenon is naturally expected in the SF. Figure 14
shows the progressive change inP from a linear dependence
on r for smallr sideal gas lawd to near independence onr as
T is lowered from highT throughTF. This property of the SF
has been noted beforef29g. Evidently, the determination of a
reliable estimate of the second virial coefficientB2, our basic
measure of the strength of the isotopic van der Waals inter-
action, could become problematicf36g from a practical
standpoint inT ranges in which the pressureP exhibits es-
sentially no dependence onr. Note thatP.0 so that the
system is still in the homogeneoussone-phased region from
the standpoint of phase separation.

It is apparent thatP does depend onr at very low con-
centrations and we may inquire if these data provide reliable
information for the second virial coefficient,B2. The deter-
mination of virial information of this kind is important be-
cause we also seek to quantify information regarding the
strength of van der Waals interactions responsible for phase

separation. The SF is a particularly favorable case for this
type of comparison since the second and third virial coeffi-
cientsf16,20,20g have been determined analytically for this
model so that comparison between the exact analytic theory
and simulation is possible.

In Fig. 15, we show the exact analytic results for the
dimensionless second virial coefficientB2

* ;3B2/ s2pNs3d of
Stockmayerf16g and Rowlinsonf20g versus our current
simulation sopen symbolsd. Simulation results were calcu-
lated by fittingP versusr data to the virial equation in the
range 0.000 637ør /rc,LJø0.0637. This comparison shows
that it is still possible to determine reliable estimate ofB2 at
low concentrations, despite the complications caused by
clustering at higher concentrations.

The exact analytic treatment ofB2 allows us to make fur-
ther statements about other characteristic temperatures of the
SF model that are germane to understanding the critical be-
havior of this model, e.g., theT at whichB2=0 s“theta tem-
perature,”Tu, in the polymer literaturef93g or the “Boyle
temperature” in gas theoryf23gd. The exact analytic expres-
sion for B2

* is given in the Appendix in the notation of the
present paper, and we numerically determinedTu as a func-
tion of m*2 to high accuracy based on this expression. The
results of this exercise are shown in Fig. 16. The theta point
of the LJ fluid is obtained as the intercept in this figure,
TLJ=3.417 928 02s3d« /kB. The variation ofTu is roughly lin-
ear in m*2 in the case of the critical temperature for phase
separation in the SF modelf25,30g, but this variation is more
accurately described by a power law for largem*2s10øm*2

ø50d,

Tu − Tu,LJ

Tu,LJ
= Am*a, s17d

whereA=0.113 anda=2.56 for which the maximum devia-
tion is 2.5% over the specifiedm* interval. The exponenta
apparently has the same limiting value atm* →` as in Eq.
s6d for «m* /«, i.e.,a= 8

3. This scaling relation is natural since
Tu is normally proportional to the strength of the intermo-
lecular interaction. The dipolar interaction clearly renormal-
izes the magnitude of the effective van der Waals interaction
so thatTu,«m* for the SFf30g. The dependence ofTu on m*2

FIG. 15. Second virial coefficient,B2
* =B2/b0, versus tempera-

ture.b0=2pNs3/3. Lines are from the analytical solution and open
symbols are from simulations; squares are form* =0 and circles are
for m* =4. The arrow indicates the direction of increasingm* ,0
øm* ø6.

FIG. 14. Dimensionless pressure versus density,P* =Ps3/«.
The arrow indicates the direction of increasing temperature.

FIG. 16. Exact analytic calculation ofsTu−Tu,LJd /Tu,LJ versus
m*2. Filled symbols indicate theta point determinations from Fig.
15.

EQUILIBRIUM POLYMERIZATION IN THE… PHYSICAL REVIEW E 71, 031502s2005d

031502-11



is nearly quadratic for small values ofm* . For smallm*2 s0
øm*2 ,0.1d, we have the simple approximation

Tu − Tu,LJ

Tu,LJ
= Bse2m*4

− 1d, s18d

whereB=0.024 38 for which the maximum deviation from
the true curve is 0.3% and this variation is shown in the inset
to Fig. 16.

Importantly, the magnitude ofTusm*d in the SF is required
in the calculation of the phase boundaries of the SF based on
a lattice model of equilibrium polymerizationf30g. This in-
formation is crucial in the analytic modeling because a
change in effective value of the van der Waals interaction
clearly influences the critical temperature and this renormal-
ization of the van der Waals interaction must be incorporated
in any successful theory of the critical behavior of the SF.
Previous calculations in Ref.f30g had to rely on much less
precise results so that Eqs.s17d ands18d should enable more
refined calculations of phase boundaries in the SF.

IV. CONCLUSION

The current interest in the self-organization of particles
into polymer chains through weak, but directional, interac-
tions provides an interesting twist in the development of
polymer science. Historically, there was a tremendous resis-
tance to the concept that long chain molecules of chemically
bound molecular units could exist, and polymers were gen-
erally thought of as associating particle systems as we find in
the SFf104g. Even until recently, it was normal practice in
polymer physics to do everything possible to suppress dy-
namical clustering processes that could perturb the measure-
ments of the properties of individual chains of invariant
chemical structuref105g. The maturation of experimental
measurement methods in classical polymer science, and the-
oretical polymer science generally, provides the necessary
tools to make progress in characterizing these hybrid mo-
lecular systems involving a combination of chemical and as-
sociative polymerization. The exploration of this field is still
in its infancy, but promises to be fruitful.

Our simulations indicate that the thermodynamic cluster-
ing transition occurring in the SF corresponds to an equilib-
rium polymerization-type transition. We were able to deter-
mine the polymerization transition line by specific heat and
order parametersFd determinations and found results semi-
quantitatively in agreement with the FA model of equilibrium
polymerizationf13g. An examination of other properties of
the SF indicated that the FA model is oversimplified and the
model must be generalized to describe the formation of rings
and other complex clusterss“mutants”d that arise from the
dipolar interaction neglected in the analytical modeling.

We also show that clustering in the SF does not make the
determination of the second virial coefficient an ill-posed
problem in those fluids as we first expected. The results of
the exact analytic theory forB2 agree remarkably with our
simulations. We were also able to give exact new results for
the theta temperature of the SF for arbitrary reduced dipolar
strengthm* . These exact results are useful for testing MC

simulations and as a point of reference in future calculations
of the critical properties of the SF.

Future work on the SF should investigate the influence of
strong interchain interactions that occur at higher concentra-
tions of SF particles. The simulations of Wei and Pateyf42g
for essentially the equivalent of the SF fluidf25g indicate the
formation of a nematic phase and an associated ferroelectric
transition. This ferroelectric transition has been argued to
persist even in the liquid state from the presence of long
polymers f106g. These simulations seem to imply that the
strong interchain interactions at highr inhibit the chain-ring
transition, leading to the formation of structuresslong
chainsd having large dipole moments. Consistent with this
hypothesis, Chen and Dormidontova show that for a donor/
acceptor associating system, there is a crossover concentra-
tion below which ring formation is favoredf58g. It would
evidently be interesting to investigate further how the chain-
ring topological transition becomes modified at higherr in
the SF and how these changes reflect themsleves in the di-
electric properties of the fluid since this property should be
sensitive to the topological form of the clusters.

Real molecules are often characterized by multipolar in-
teractions in addition to dipolar interactions, and we plan to
investigate how these multipolar interactions influence super-
molecular self-organization. Dijkstraet al. f103g have al-
ready provided some interesting insights into the structures
that form when linear quadrupolar interactions are large, as
in the case of exfoliated clay dispersions. They find that
branchedequilibrium polymers form for large quadrupolar
interactions rather than the linear chains found for dipolar
fluids. Water is characterized by relatively large dipolar and
quadrupolar interactions, and the branched transient network
structures are known to be responsible for many of the
unique properties of this complex fluidf107g. By varying the
relative magnitudes of the dipolar and quadrupolar interac-
tions, it should be possible to make a transition between
linear and branched equilibrium polymers. The self-
organization of sheetlike structures is also a possibility. Apart
from these qualitative changes in topological structure, we
will concern ourselves with how these additional interactions
alter the polymerization transition line position, the geo-
metrical characteristics of the polymers that form, and the
nature se.g., sharpness of transitiond of the polymerization
transitions that occur in these fluids.

We also plan to consider the influence of monopole
schargedd particles on the self-organization of liquids having
multipole interactions. The presence of charged particles at
the ends of dipolar chains would clearly influence both the
propagation of chain growth and the propensity of ring or
branched polymer formation. Charged particles could thus
play a powerful role in regulating the polymerization pro-
cess, and investigations of the influence of this coupling be-
tween multipolar and charge interactions on self-organization
should lead to many interesting effects.

Finally, we note that charged particle fluids such as the
restricted primitive modelsfluid composed of an equal num-
ber of charged spheres of opposite sign and the same diam-
eterd f112g exhibit equilibrium polymerization since the
charged particles have a strong propensity to dimerize or to
form multipole elementsf108,109g, which in turn polymerize
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as in multipolar fluids. An equilibrium polymerization model
has provided an apparently quantitative description of dy-
namic clustering in a fluid composed of spherical and point-
like counterionssa cartoon of polymer solutionsd f110g, and
further studies of equilibrium polymerization in charged flu-
ids provide another fruitful direction in which to extend the
present work. Such systems provide a starting point for un-
derstanding the ubiquitous dynamic clustering observed in
polyelectrolyte solutionsf111g.
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APPENDIX

The dimensionless second virial coefficient is given by
f23g
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The additive third virial coefficient is not analytically trac-
table and must be determined by integration from the formal
relation f23g
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where the anglessui ,fid determine the orientations of the
dipoles and where, ifr ,s, andt are the distances between the
centers of the three spheres,

s2 = r2sx2 + y2d,

t2 = r2fs1 − xd2 + y2g. sA4d

The functionsf ij =expf−uij /kBTg−1, whereuij is the poten-
tial energy betweeni and j and is given in Eqs.s1d and s2d.
Rowlinsonf20g first evaluated the third virial coefficient but
unfortunately introduced an error depending on the dipole
moment and temperaturef21g. The numerical evaluation of
the integrals in Eq.sA3d can be computationally intensive,
but progress has been made in improving efficiency by mak-
ing use of multidimensional nonproduct formulasf22g.
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